Advertise Here

Turgut Aksu

- Another Blogger Blog's

California Üniversitesi Beyin Araştırma Enstitüsü'nün fizyoloji bölümündeki araştırmacılar, daha hassas işitme cihazları üretebilmek için doğadaki işitme sistemlerini incelemeye almışlardır. Yapılan bilimsel çalışmalar sonucunda Ormia ochracea adlı sinek türünün kulağının, sahip olduğu olağanüstü tasarımıyla işitme aleti dizaynında bir devrim yapacağı anlaşılmıştır. Bu sineğin kulağı, sesin geldiği yönü mükemmel bir şekilde tespit edecek şekilde tasarlanmıştır. Nörobiyolog Ron Hoy bu durumu şöyle anlatır:
Bugüne dek, sesin geldiği yönü tayinde insan kulağının en iyi olduğunu zannediyorduk. Birbirinden 15 cm uzaklıkta yer alan iki kulağımız sayesinde, ses kaynağının yeri hakkında yeterli ipucu elde edebiliyoruz. Oysa Ormia sineği, kulaklarının arasında yarım milimetrelik bir mesafe olmasına rağmen sesin kaynağını tüm canlılardan daha iyi tespit edebiliyor. (Peter M.Narins Acoustics: In a Fly's Ear, Nature 410, 644-645 (2001)
Ormia sineğinin, sesin geldiği yeri hatasız olarak bulabilmesi soyunun devamı için şarttır, çünkü larvalarına besin kaynağı olabilecek bir cırcır böceği bulmak zorundadır. Ormia yumurtalarını, bulduğu bu cırcır böceğinin üzerine bırakarak çıkacak asalak larvaların onunla beslenmelerini sağlar.
Ormia sineğinin, cırcır böceğinin yerini bulması için tasarlanmış hassas kulakları vardır. Şarkı söyleyen cırcır böceğinin yerini o kadar milimetrik saptar ki, koca ormanın içinde hedefini yalnızca 2 derecelik bir hata payıyla yakalar.
İnsan beyni de sesin yerini tespit için Ormia ile aynı yöntemi kullanılır. Bunun için, sesin önce yakındaki kulağa, daha sonra uzakta kalan kulağa ulaşması yeterlidir. Ses dalgası kulak zarına çarptığında bu etki elektrik sinyaline çevrilerek hemen beyne iletilir. Sesin iki ayrı kulağa kaç milisaniye farkla ulaştığını hesaplayan beyin, böylece sesin geldiği yönü hemen saptar. İnsanda bu hesaplama 10 milisaniyede sonuçlanır. Oysa bu sinek türü, aynı hesabı toplu-iğne başı büyüklüğündeki beyniyle, insandan bin kat daha hızlı bir şekilde gerçekleştirir.
Bu sineğin minik olmasına rağmen oldukça işlevsel olan kulak tasarımı, "ORMİAFON" adı altında, işitme aleti ve dinleme cihazlarının yapımında taklit edilmeye çalışılmaktadır. Görüldüğü gibi, küçücük bir sinek dahi evrim teorisinin 'tesadüfen oluşma' safsatasını kökünden çürüten çok üstün bir yapıya ve tasarıma sahiptir. Yine aynı küçük sinek, her parçası ve özelliğiyle onu yaratan sonsuz ilim ve kudret sahibi Yaratıcımızın üstün yaratma sanatını sergiler. Böyle küçücük bir sineğin değil kendi kendine, evrim gibi hayali bir süreçle oluşması, akıl ve zeka sahibi insanların hepsinin biraraya gelmesi, en son teknolojileri ve imkanları seferber etmeleri ile dahi meydana getirilmesi mümkün değildir.
Küçücük bir sinek bile Allah'ın üstün yaratmasının apaçık delillerindendir.

Gözümüzün sinir hücreleri olan "retina hücreleri" gelen ışığı tanıyıp yorumlar. Retina hücreleri daha sonra değerlendirilen bu bilgileri bağlantıda oldukları diğer hücrelere iletir. Gözümüzdeki tüm bu işlemler yeni bilgisayarlara model oluşturmuştur:

Retina hücrelerinin yaptığı iş yalnızca ışığı algılamakla sınırlı değildir. Retina birbirleriyle olağanüstü bir yoğunlukta bağlantı oluşturmuş sinir hücrelerinden oluşur. Işığa ait sinyaller beyne iletilmeden önce sayısız işlemden geçirilir. Örneğin retinayı oluşturan hücreler cisimlerin kenarlarını hesaplar, ışık sinyalinin gücünü artırır, aydınlık ya da karanlığa göre uyum sağlayarak düzeltmeler yapar. Günümüzün güçlü bilgisayarları da benzeri işlemleri yerine getirebilmektedir. Ancak retinadaki sinir ağı bu iş için, bilgisayarlara nispeten çok daha az bir enerji kullanır.

California Teknoloji Enstitüsü'nden Carver Mead başkanlığında bir araştırma ekibi, retinada kolayca gerçekleştirilen işlemlere imkan tanıyan tasarımın sırrını araştırmaktadır. Carver Mead, Caltech firmasından biyolog Misha Mahowald ile birlikte retinadaki sinir ağına benzer yapıda elektronik devreler tasarlamıştır. Yapılan bu devrelerde gözdeki gibi ışık algılayıcıları bulunmaktadır. Algılayıcılar tıpkı retinada olduğu gibi bir diğer algılayıcıyla bağlantı halindedir. Kullanılan direnç, amfi gibi elektronik devre parçalarının, ışık algılayıcılarının, retina hücreleri gibi kendi aralarında haberleşebilmelerine imkan tanımaktadır.

Ancak tüm çabalara rağmen, bu devreyi, retina ağında olduğu gibi birebir olarak taklit edebilmek mümkün olmamıştır. Çünkü canlı bir retinadaki hücrelerin ve bunların arasındaki bağlantıların sayısı çok fazladır. Bunun yerine tasarım mühendisleri şu an için, retinadaki sinir ağının ön işlemlerini nasıl yaptıklarını anlamaya çalışıp, aynı işi yapabilen daha basit devreler tasarlamaktadırlar.
Gözün gerçekleştirdiği işlemlere hayranlık duyan ve gözün üstün tasarımını teknolojik alanda taklit etmek isteyen bilim adamları, son zamanlarda bu konu hakkında birçok çalışma yapmaktadırlar. Bu sayede doğada bulunan canlıları ve kusursuz mekanizmaları da daha yakından inceleme imkanı bulmuşlardır. Biyomimetik alanında yapılan bu çalışmalar teknolojik alandaki gelişmelere büyük hız kazandırmaktadır.

Fotoğraf makinesi göze göre son derece ilkel bir yapıya sahiptir. Hatta gözün görüntü iletme tekniği en gelişmiş kameralardan bile kat kat üstündür. Sonuç olarak da gözün ilettiği görüntü insanoğlu tarafından yapılmış herhangi bir aletin iletebildiği görüntüden çok daha kalitelidir.

Bir TV kamerasının çalışma prensipleri incelenirse sözü edilen gerçek daha iyi anlaşılır. Bu kameranın çalışma ilkesi görüntülerin değil, bir görüntüyü yeniden oluşturacak olan ışıklı nokta dizilerinin iletilmesine dayanır. Bu yüzden kamera karşısındaki nesne, satır denilen belirli sayıda kuşağa bölünür ve de yayın sırasında bir "tarama" işlemine başvurulur. Bir fotosel lamba, böyle bir satırın bütün noktalarını soldan sağa birbiri ardınca tarar. Hepsinin ışık durumunu değerlendirir ve sonunda bunlara dayanarak birtakım sinyaller verir. Bir satırı baştan sona kadar taradıktan sonra, bir sonraki satıra geçer ve tarama işlemi böylece sürüp gider. Bu fotoselin çalışma ritmi, bir görüntünün 625 ya da 819 satırını 1/25 saniyede tarayabilecek şekilde hesaplanmıştır. Böylece bütün bir görüntünün tamamlanması bitince, yeni bir görüntü iletilir. Bu şekilde iletilen bildirilerin sayısı çok fazladır ve sinyaller baş döndürücü bir tempoyla üretilir.

Gözün tüm bu anlattıklarımızdan çok daha üstün bir işleyiş mekanizmasına sahip olduğu dahası hiçbir bakım ve parça değişimine ihtiyaç duymadığı düşünülürse yapısının ne kadar hayranlık verici ve mükemmel olduğu daha net bir şekilde anlaşılır.

Tıp teknolojisi geliştikçe de insan gözünün ne kadar büyük bir mucize olduğu daha iyi anlaşılmaktadır. Göz hakkında elde edilen bilgilerin teknolojiye uyarlanmasıyla da her geçen gün çok daha gelişmiş kameralar, fotoğraf makineleri ve sayısız optik sistem üretilmektedir. Ancak, teknoloji ne kadar ilerlese de yapılan elektronik aletler gözün ilkel birer taklidi olmaktan öteye gidememiştir. Bilgisayar destekli kameralar da dahil olmak üzere hiçbir insan buluşu alet, göze rakip olamaz.

Peki gözdeki bu kompleks yapı nasıl ortaya çıkmıştır?

Kuşkusuz bu yapının tesadüfler sonucunda ya da uzun zaman içinde kendi kendine oluşması mümkün değildir. Göz tek bir parçası eksik olsa işlevini yerine getiremeyecek bir yapıya sahiptir. Hiçbir tasarım tesadüfen oluşamaz, gözde çok açık ve benzersiz bir tasarım vardır ve elbette o da tesadüfen var olmuş değildir. Canlı-cansız tüm varlıklar gibi gözümüzü de var eden Yüce Allah'tır. Böylesine kompleks "organik makina"nın bizlere verilmiş olması, Allah'a şükretmemiz için bir vesiledir. Kuran-ı Kerim'in bir ayetinde Allah şöyle buyurmaktadır:

De ki: 'Sizi inşa eden (yaratan), size kulak, gözler ve gönüller veren O'dur.' Ne az şükrediyorsunuz? (Mülk Suresi, 23)

Renkli Dünyaya Açılan Pencere

Göz, görüntünün aynı anda hem siyah-beyaz, hem de renkli fotoğrafını çeker. Daha sonra bu fotoğraflar beyinde sentezlenerek normal görüntü halini alır.

Retina tabakasında bulunan çubuk hücrelerinin görevi, bakılan nesnenin biçimini siyah-beyaz olarak ayrıntılı bir şekilde algılamaktır. Koni hücreleri ise nesnenin renklerini tespit ederler. Sonuçta, her iki hücreden alınan sinyallerin değerlendirilmesiyle, dış dünyanın görüntüsü şekillenir ve renkli bir halde beynimizde oluşur.
Comments: (0)
Bir fotoğraf makinesiyle gündüz çekilen fotoğraf net olur. Ancak aynı film ve makineyle gece yıldızlar çekildiğinde fotoğrafta hiçbir şey gözükmez. Oysa göz kapaklarımız saniyenin onda biri gibi kısa bir zamanda açılıp kapanmalarına rağmen geceleri yıldızları çok net bir şekilde görebiliriz. Çünkü gözlerimiz çok çeşitli aydınlanma koşullarına ve değişik ışık şiddetlerine göre kendisini her an otomatik olarak ayarlayabilir. Bunu sağlayan, gözbebeğinin etrafındaki kaslardır. Eğer ortam karanlık olursa bu kaslar açılır, gözbebeği genişler ve göze daha çok ışığın girmesi sağlanır. Eğer ortam aydınlık olursa bu sefer kaslar kapanır, gözbebeği küçülür ve içeri giren ışığın miktarı azaltılır. Bu sayede hem gece hem gündüzgörüntü net olur.
Comments: (2)

Fotoğraf çekilirken yapılacak ilk işlem netlik ayarıdır. Görme işleminde de, etrafımızdaki görüntülerin duyarlı tabaka üzerine net olarak düşmesi için aynı işlemin yapılması gerekir. Fotoğraf makinelerinde bu işlem elle, gelişmiş kameralarda ise otomatik olarak yapılır. Daha özel amaçlarla kullanılan mikroskop ve teleskoplarda da netlik ayarı yapılır. Ancak yapılan bu işlem her durumda vakit kaybına neden olur.
Oysa insan gözü bu ayarı sürekli olarak ve çok kısa bir süre içinde kendi kendine yapar. Üstelik kullanılan yöntem taklit edilemeyecek kadar üstündür. Göz merceği, çevresinde bulunan kaslar sayesinde görüntüyü retina üzerine düşürür. Yapısı son derece esnek olan ve kolay biçim değiştiren bu mercek, gerektiğinde bombeleşerek, gerektiğinde gerilerek ışığın düştüğü noktayı sabit tutar.

Eğer gözde bu ayar kendiliğinden yapılmasaydı, örneğin insan baktığı noktaya bir düğme yardımı ile odaklama yapmak zorunda kalsaydı, görmek için sürekli özel bir çaba harcaması gerekecekti. Görüntü bir netleşip bir bulanıklaşacaktı. Bir nesneye bakıldığında görebilmek zaman alacak, bunun sonucunda tüm hareketlerimiz yavaşlayacaktı.

Ancak Allah gözlerimizi kusursuz olarak yaratmıştır ve dolayısıyla bu sıkıntıların hiçbirini yaşamayız. Hiç kimse, karşısında belli bir uzaklıkta duran nesneyi net olarak görmek istediğinde, aradaki mesafeyi, merceğin odaklama ayarını ve bunlarla ilgili birçok optik hesaplamaları yapmakla uğraşmaz. Nesneyi net görebilmek için yalnızca ona bakmak yeterlidir. Geri kalan tüm işlemler otomatik olarak göz ve beyin tarafından halledilir. Üstelik bütün bu işlemler yalnızca bir isteme süresinde gerçekleşir.

Omurgalı hayvanların gözleri, ışığın "göz bebeği" adı verilen delikten içeri girdiği yuvarlak toplara benzer. Göz bebeğinin arkasında mercekler yer alır. Işık önce bu merceğin daha sonra da göz yuvalarını dolduran sıvının içinden geçer ve retinanın üzerine düşer. Retinanın üzerinde, "koni hücreler" ve "çubuk hücreler" olarak adlandırılan yaklaşık yüz milyon hücre vardır. Çubuklar aydınlığı ve karanlığı ayırt edebilirken, koniler renkleri seçerler. Bu hücreler, üzerlerine düşen ışığın etkisiyle oluşan imajı elektrik sinyallerine çevirip optik sinir ağı aracılığıyla beyne yollar. Gözler ışık yoğunluğunu göz bebeğini çevreleyen iris aracılığıyla ayarlar. İris ise, yapısında bulunan minik kaslar sayesinde büyüyüp küçülebilir. Bu, fotoğraf makinelerindekine benzer bir mekanizmadır. Makinaya giren ışık miktarı, "diafram" adı verilen mekanik bir iris aracılığıyla ayarlanmaktadır. Phil Gates Wild Technology adlı kitabında, fotoğraf makinalarının gözü taklit eden basit bir model olduğunu şöyle açıklar:

Fotoğraf makinaları, omurgalı gözlerinin ilkel ve mekanik bir versiyonudur. Bu makinalar aslında aynen göz gibi, önlerindeki açıklık dışında içine ışık geçirmeyen kutulardır. Görüntüyü retina yerine bir film üzerine yansıtırlar. Gözlerde görüntüye odaklanma merceğin şekli değiştirilerek olur. Fotoğraf makinalarında ise bu işlem merceğin filme olan mesafesi değiştirilerek gerçekleştirilir.

Siber alemde bir bilgisayar bir virüsten etkilenecek olursa bu, dünyadaki diğer bilgisayarların da etkilenebileceği anlamına gelir. Dolayısıyla pek çok firma, bilgisayar network sistemlerini virüslerden korumak için bir "bağışıklık sistemi" oluşturmanın gerekliliğini hissetmiş ve bu alanda çok sayıda çalışma yapmaya başlamışlardır. Bu çalışmaları sürdüren merkezlerden biri de New York'ta bulunan, IBM'in Watson Araştırma Merkezi'ndeki virüs yalıtım laboratuvarıdır. Burası, öldürücü virüslerle çalışan yüksek güvenlikli bir mikrobiyoloji laboratuvarıdır. Ayrıca burada, şimdiye kadar tanımlanmış 12.000 bilgisayar virüsünü teşhis edebilecek, aynı zamanda virüsü güvenli bir şekilde bilgisayarlardan izole ve yok edebilecek programlar üretilmektedir.

Biraz önce bahsettiğimiz siber alemdeki virüslere karşı mevcut bilgisayar sistemlerini koruyabilecek dünya çapında bir bağışıklık sistemi kurmaya çalışan firmalardan birisi de ünlü bir marka olan IBM firmasıdır. Firma yetkililerinden biri olan Steve White, bu konuda çözüme ulaşabilmek için insan vücudundaki gibi bir bağışıklık sisteminin kurulması gerektiğini şöyle ifade etmektedir:

İnsan ırkının varlığını devam ettirebilmesinin tek sebebi, sahip olduğu bağışıklık sistemidir. Siber-alemin devamı için de bir bağışıklık sistemine sahip olması şarttır. ( http://www. newscientist. com/hottopics/ai/strikesback. Jsp)

Araştırmacılar bilgisayar ağları ile canlılar arasında kurdukları bu bağlantı sayesinde, bilgisayarları tıpkı savunma sistemimizin işleyişi gibi koruyan programlar üretmeye başlamışlardır. Onlara göre epidomoloji (salgın hastalıklarla ilgilenen bilim dalı) ve immunolojiden (bağışıklık sistemi ile ilgilenen bilim dalı) öğrendiklerimiz, canlı organizmaları koruduğu gibi elektronik organizmaları da yeni tehlikelerden koruyabilecektir.

Bilgisayar virüsleri, bilgisayarlara sızıp kendilerini kopyalayarak çoğaltacak ve girdiği bilgisayarda hasarlar oluşturacak şekilde dizayn edilmiş sinsi programlardır. Bu virüslerin belirtileri, tıpkı insanlarda görülen çeşitli hastalıklar gibi, bilgisayar sisteminin yavaşlaması, bazen de esrarengiz bir şekilde dosyalarda hasar oluşmasıdır.

Virüs tehdidine karşı bilgisayarınızı korumayı vaad eden programlar, bilgisayarınızın hafızası tarafından daha önce tanımlanmış virüslerin izlerini bulmak için bilgisayarın bütün belleğindeki her kodu araştıran teşhis programlarıdır. Bilgisayar virüsleri, yazılımcısının imzası niteliğini taşıyan ve tanınmasına imkan veren izler barındırırlar. Bilgisayardaki virüs tarayıcı program bu imzayı bulduğunda, bilgisayara virüsün bulaştığına dair bir uyarı verir.

Yine de anti virüs programlarının bilgisayarlar için tam bir koruma sağladığı söylenemez. Çünkü bazı kişiler birkaç gün içinde yeni virüsler hazırlayıp bilgisayar ortamlarına yerleştirebilmektedir. Bu durumda anti virüs programlarının sürekli olarak güncellenmesi, yeni virüs izlerini tanımalarını sağlayacak bilgilerin verilmesi gerekmektedir. Dolayısıyla sistemler devamlı yenilenmeli ve yeni geliştirilen virüslere karşı yeni anti-virüs programlarının eklenmesi gereklidir.

Ayrıca dünya çapında internet kullanımının yayılması ile birlikte bu virüsler de çok büyük bir hızla yayılmaya ve bilgisayarlara ciddi hasarlar vermeye başlamıştır. IBM firması araştırmacıları da çözümü, doğadaki örneklerin taklit edilmesinde bulmuşlardır. Herşeyden önce bilgisayar virüslerinin de suni bir hayatı vardır ve tıpkı doğadaki biyolojik virüsler gibi, içinde bulundukları sistemi kendilerini çoğaltmak için kullanırlar. Araştırmacılar bu benzerlikten yola çıkarak insanın bağışıklık sisteminin insan vücudunu nasıl koruduğunu incelemişlerdir:

Vücut, yabancı bir organizmayla karşılaştığında hemen istilacıyı tanıyıp etkisiz hale getirecek bir antikor oluşturmaya başlar. Bağışıklık sistemi hastalığa yol açabilecek hücrenin bütününü analiz etmek durumunda da değildir. İlk enfeksiyon yatıştırıldığında, vücut ileriki bir enfeksiyonda daha hızlı karşılık verebilmek için bu antikorlardan bir kısmını hazır tutar. İşte bu hazır tutulan antikorlar sayesinde hücrenin tümünün incelenmesine gerek kalmaz. Nitekim mevcut anti-virüs programları da bütün virüsü değil ama virüsün imzasını tanıyacak bir antikor içerirler.

Görüldüğü gibi insanları teknolojik alanda çaresiz bırakan konuların çözümleri dahi doğada mevcuttur. Her detayın düşünülmüş olduğu kusursuz bir işleyişe sahip savunma sistemimiz, daha biz doğmadan -bizi korumak göreviyle- hazır bulundurulmuştur. Rabbimiz herşeyi koruyan ve gözetendir. Bir ayette şöyle buyrulmaktadır:

… Doğrusu benim Rabbim, herşeyi gözetleyip-koruyandır. (Hud Suresi, 57)

Ortalama 70-80 yıl gibi uzun bir süre yaşayan bir kişinin kalbi, dakikada 70-80 kereden bütün ömrü boyunca yaklaşık birkaç milyar defa atar. Yapay kalp üzerine araştırmalarıyla tanınan "Abiomed" isimli şirket, bütün araştırmalarına rağmen kalbin yıllarca başarıyla sergilediği kesintisiz fonksiyonu taklit edemeyeceklerini ifade etmiştir. Şirketin yeni geliştirdiği yapay kalbin 5 senede yaklaşık 175 milyon kez atması ise çok iyi bir hedef olarak görülmektedir. (http://www. findarticles. com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000)

Son teknoloji ürünü bu yapay kalp, insanlardan önce danalarda denenmiş, ancak danalar sadece birkaç ay süre ile hayatta kalabilmişlerdir. Birkaç ufak değişiklikle birlikte yeni kalbin gelecek yıl insanlarda da denenmesi planlanmaktadır. Duke Üniversitesi'nde bir biyomühendis olan ve bu konuda yazılmış bir de kitabı bulunan Steven Vogel, araştırmacıların neden insan kalbini taklit etmekte bu kadar zorlandıklarını şöyle açıklamaktadır:

Bizim sahip olduğumuz motorlar, güçleri ve etkinlikleri ne olursa olsun, o kadar farklı çalışırlar ki. Oysa kalp kası, bizim teknolojik donanımımızda bulunan hiçbir şeye benzemeyen yumuşak, ıslak, kasılabilen bir makine gibidir. İşte bir kalbi bu yüzden taklit edemezsiniz. (http://www. findarticles. com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000)

Abiomed şirketinin yapay kalbi de gerçek bir kalp gibi 2 karıncıktan oluşmaktadır. İki kalp arasındaki benzerlik sadece budur. Araştırmayı yöneten Pennsylvania Üniversitesi'nden biyomühendis Alan Snyder bu farkı "Gerçek bir kalpte kas bir kap gibi görev görüyor ve kendisi kasılıyor" ifadeleriyle anlatır. Kalple aynı prensipte çalışan pompalarda bir kap ve bu kabın içindeki akışkanı pompalayan bir de sistem bulunur. Kalpte ise kabın kendisi pompa işlemi görür. Alan Snyder'in bir cümle ile özetlediği fark işte budur.
Kendi kendine kasılan bir kabı nasıl yapacaklarını bilemeyen araştırmacılar, iki karıncığın arasına yerleştirdikleri bir motor sayesinde, her iki karıncığın iç duvarlarını iterek hareket ettirmişlerdir. Yapay kalp, karın içine yerleştirilen bir pille çalışmakta, bu pil ise hastanın üzerinde taşıdığı şarj olabilen daha büyük bir pil paketinden yayılan radyo dalgaları ile sürekli şarj edilmek zorundadır.
Gerçek bir kalbin ise enerji için bir pile ihtiyacı yoktur, çünkü kalbimiz kendi nerjisini her hücresinin içinde kendi başına üretebilen benzersiz bir kas tasarımına sahiptir. Ayrıca kalbin taklit edilemeyen özelliklerinden biri de eşi benzeri olmayan dinamik bir atım hacmine sahip olmasıdır. Nitekim dinlenme halinde dakikada 5 litre kan pompalayan bir kalp, egzersiz sırasında bunu dakikada 25-30 litreye kadar artırabilir. Abiomed şirketinin yöneticisi olan Kung, bu olağanüstü tempo değişikliğini "Bu henüz hiçbir mekanik cihazın ulaşamayacağı bir şey" diyerek ifade eder. Şirketin yaptığı yapay kalp ise dakikada en fazla 10 litre kan pompalayabilir ki bu da pek çok faaliyet açısından yetersiz kalır.( http://www. findarticles.com/cf_0/m1511/1_21/58398795/print. jhtml; Robert Kunzig, Discover, "The Beat Goes On", January 2000)

Ama asıl ulaşılamayan, kalbin kendine pompaladığı kan ile beslenmesi ve ihtiyaca göre güçlenmesidir. Böylece bir kalp hiç bakım görmeden 50-60 sene çalışabilir. Kalp kendi kendini yenileyebilme özelliğine sahiptir. Bu nedenle kesintisiz çalışma performansını hiçbir zaman kaybetmez. Bu da onu taklit edilemez yapan en büyük özelliklerinden bir başkasıdır.

Bilim adamlarının günümüz teknolojisi ile ulaşamadıkları, sadece ulaşmayı hayal edebildikleri özelliklere sahip olan kalbimiz, benzersiz tasarımıyla Yaratıcımızın, Yüce Rabbimiz olan Allah'ın üstün ilmini bizlere tanıtmaktadır.

Bazı örümceklerin kurdukları ağlar, çalıların üzerine bırakılmış bir örtüye benzer. Zemin boyunca yayılan ağ, çalıların uçlarına tutturulan gergin iplikçiklerle taşınır. Bu taşıma sistemi, örümceğe, sağlamlıktan ödün vermeden, oldukça geniş bir alanda ağ kurmasına imkan tanır.

Bu harika yöntem, büyük mekanların üstünü kapamak amacıyla insanlar tarafından birçok yapıda taklit edilmiştir. Bu yapılardan bazıları şunlardır: Cidde Havaalanı Hac Terminali, Münih Olimpiyat Stadyumu, Sidney'deki Ulusal Atletik Stadyumu, Kanada ve Münih'teki hayvanat bahçeleri, ABD'de Denver Havaalanı ve Cambridge'teki Schlumberger Araştırma Merkezi binası.


Soldaki resimde Münih Olimpiyat Stadyumu, Sağdaki resimde Denver'da bir havaalanı görülmektedir.

Örümceğin bu yöntemleri kendi kendisine geliştirebilmesi için uzun süre mühendislik eğitiminden geçmiş olması gerekir. Elbette ki böyle bir şey mümkün değildir. Örümcekler ne yapı statiği, ne de mimari tasarım bilirler. Örümceklerin kurdukları ağlar, "Yaratılış Gerçeği"ni gözler önüne seren delillerden yalnızca biridir.


Arı peteklerinin inşasında son derece önemli detaylar vardır. Bu detaylardan biri de peteklerin dayanıklılığıdır. Arılar birbirlerine yön tarif ederken kovanda, bu boyutlarda bir yapı için deprem kabul edilebilecek titreşimler oluşur. Peteğin duvarları bu ufak depremleri emer. Nature dergisi, bu üstün yapının mimarlara, depreme dayanıklı binalar inşa etmede fayda sağlayacağını belirtmiştir. Haberde Almanya'nın Wurzburg Üniversitesi'nde görevli olan Jurgen Tautz bu konuyla ilgili olarak şu açıklamayı yapmıştır:

Kovanlardaki titreşimler arılar tarafından oluşturulan minyatür depremler gibidir, dolayısıyla yapının buna nasıl bir tepki verdiğini görmek oldukça ilginç. Titreşimlerin emilmesini anlamak, mimarlara, binaların depremlere karşı hangi taraflarının daha dayanıksız olacağını söylemede yardımcı olacak. Bundan sonra bu kısımları kuvvetlendirebilirler ya da binaların kritik olmayan kısımlarına zararlı titreşimleri emecek zayıf noktalar yerleştirebilirler.

Bütün bunlardan da anlaşıldığı gibi, arıların büyük bir ustalıkla inşa ettikleri petek, kusursuz bir tasarım harikasıdır. Dolayısıyla petekteki bu yapı mimarlara ve bilim adamlarına ışık tutmakta, yeni fikirler vermektedir. Arıların peteklerini böylesine kusursuz yapmalarını sağlayan şey, evrimcilerin iddia ettikleri gibi tesadüfler değildir. Arılara bu özellikleri, bu şaşırtıcı yetenekleri veren sonsuz ilim ve kudret sahibi olan Allah'tır.

Suda yaşayan organizmalar olan ışınlılar ve diatomlar eşsiz birer mimari yapı kataloğu niteliğindedirler. Birçok mimar projelerini bu canlılardan esinlenerek hazırlamaktadır. 1976'da Kanada'nın Montréal şehrinde kurulan EXPO 76 fuarındaki ABD pavyonu bu yapılara bir örnektir. Pavyonun kubbesi tasarlanırken ışınlılardan esinlenilmiştir. ( "Biyonik, Doğayı Kopya Etmektir", Science et Vie'den Çev. : Dr.Hanaslı Gür, Bilim ve Teknik Temmuz 1985, s. 21)


İnşaat ve mimaride genellikle yaygın ve düz yüzeyler tercih edilir. Oysa doğada bu tip yüzeylere daha çok eğrisel yerleşmiş lifler arasında rastlayabilirsiniz. Örneğin muz bitkisi böyle bir yapıya sahiptir. Mimarlar ve inşaat mühendisleri muzun bu formunu kullanarak 'jeodezik kubbe' olarak adlandırılan yapı tarzını geliştirmişlerdir. Jeodezik kubbe sayesinde, büyük mekanları az malzeme kullanarak kapamak mümkün olmuştur. Üstelik mekanın içi bol miktarda gün ışığı alabilmekte ve sistem çok çabuk bir şekilde monte edilebilmektedir. Bu nedenle bu yapı daha çok sera ve fuar alanı inşasında uygulanmaktadır.

Bir mühendislik harikası olarak kabul edilen Eiffel Kulesi'nin tasarımına neden olan olay, kulenin inşaasından 40 yıl öncesine dayanır. Bu olay, o yıllarda İsviçre'nin Zürih şehrinde "uyluk kemiğinin anatomik yapısı"nı ortaya çıkarmayı amaçlayan çalışmadır.

1850'li yılların başında, anatomist Hermann Von Meyer, uyluk kemiğini kalça eklemine bağlayan parçayı inceliyordu. Uyluk kemiğinin leğen kemiğine oturduğu yer kendi ekseni dışındaki bir kıvrım üzerinde bulunmaktaydı. Von Meyer, dikey konumdayken 1 ton ağırlığı kaldırabilecek bir kapasiteye sahip uyluk kemiğinin içinin tek parça halinde değil, birbiri içine geçmiş kafes şeklindeki minik çubuklardan (trabeculae) oluştuğunu gördü.

1866 yılında İsviçreli mühendis Karl Cullman, Von Meyer'in laboratuvarını ziyaret etti. Anatomist Meyer, Cullman'a incelediği kemiğin bir bölümünü gösterdi. Cullman kemiğin, üzerinde oluşacak yük ve basınç etkisini azaltacak bir tasarıma sahip olduğunu fark etti. Bu tasarım kemiğin içindeki uzantıların, insan ayakta durduğunda kemiklere etki eden kuvvet hatları boyunca düzenlenmiş olmasıydı. Bir mühendis olan Cullman aynı özelliğin bir dizi çivi ve destek sistemi ile sağlanabileceğini düşündü. Daha sonra Eiffel Kulesi'nin inşası sırasında bu düşüncelerini uygulama fırsatı buldu.

Eiffel Kulesi de uyluk kemiğindeki gibi, demir kıvrımları, metal çivi ve desteklerden oluşan karışık bir kafes örgü ile inşa edilmiştir. Bu örgü sayesinde kule, rüzgarın eğme ve makaslama kuvvetleri ile oluşan basınca rahatlıkla dayanabilmektedir.



Kemiklerdeki kafes yapı bugün inşaat alanında kullanılan temel tekniklerden biri haline gelmiştir. Bu tekniğin kullanıldığı yapılarda hem malzeme tasarrufu sağlanmakta hem de yapının iskeleti kemikteki gibi sağlamlık ve esneklik kazanmaktadır.

Birçok mimar ve inşaat mühendisi çatı tasarımı yaparken kemiğin iç yapısından faydalanmıştır. Kafes yapı, kemiğin kaldırabildiği yük kapasitesini artırır ve büyük bir sağlamlık kazandırır. Kemiktekine benzer iğli yapılar sayesinde büyük alanları kaplayabilen sağlam çatılar yapılabilmektedir.


Eiffel Kulesi, uyluk kemiğinin başındaki yapıya benzer şekilde inşa edilmiştir. Bu tasarım sayesinde kule hem sarsılmaz bir özellik kazanmış hem de havalandırma problemini ortadan kaldırmıştır.

Kristal Saray, Joseph Paxton adındaki bir peyzaj mimarı tarafından tasarlanmıştı. Paxton bu yapısında fikir olarak Victoria amazonica adındaki bir nilüfer çiçeğinden esinlenmişti. Bu nilüfer türü zarif görünümüne karşın, insanları bile üzerinde taşıyabilecek kadar kuvvetli, kocaman yapraklara sahiptir.
Paxton bu yaprakların altını incelediğinde, bunların kaburga benzeri bir yapı ile desteklenmiş olduğunu fark etmiştir: Yaprağın merkezinden çevreye doğru yayılan lif şeklinde uzantılar vardır. Bu uzantıların arası da daha ince çaprazlamasına yerleşmiş başka bir doku ile desteklenir. Paxton nilüfer yaprağındaki kaburgaya benzer yapıyı demir taşıyıcılarla, yaprağın asıl dokusunu ise cam ile özdeşleştirmiştir. Bu sayede, cam ve demirden yapılma, hafif ama aynı zamanda geniş bir alanı kaplayacak kadar sağlam çatılı bir bina yapmayı başarmıştır.

Nilüfer bitkisi Amazon nehrinin dibindeki bataklığın içinde büyümeye başlayarak nehrin yüzeyine doğru uzanır. Amacı yaşayabilmesi için gerekli olan ışığa ulaşmaktır. Suyun yüzeyine vardığında büyümesini durdurur. Hemen ardından burada üstü dikenli yuvarlak tomurcuklar oluşturmaya başlar. Tomurcuklar birkaç saat gibi kısa bir sürede, boyu neredeyse iki metreye varan dev yapraklara dönüşürler. Çünkü ne kadar bol yaprakla nehrin üzerini kaplanırsa o kadar çok güneş ışığından yararlanılarak fotosentez yapılacaktır.

Nilüfer bitkisinin ihtiyaç duyduğu bir başka şey de oksijendir. Ne var ki bitkinin köklerinin bulunduğu çamurlu nehir yatağında oksijen yoktur. İşte bu sebeple nilüferler, köklerinden çıkan sapları yukarıya, yapraklarının bulunduğu su yüzeyine doğru uzatırlar. Kimi zaman boyu 11 metreye varan bu saplar yapraklara bağlanır ve yaprakla kök arasında oksijen taşıyan bir kanal görevi görürler.

Acaba bir nehrin derinliklerinde yaşama yeni başlayan tomurcuk, ışığa ve oksijene ihtiyaç duyduğunu, noksanlığı durumunda yaşayamayacağını, ihtiyacı olan şeylerin suyun üzerinde mevcut olduğunu nereden bilir? Yaşamaya yeni başlayan bir varlık, ne o suyun bir bitiş noktasının olduğundan, ne güneşin, ne de oksijenin varlığından haberdardır.

Dolayısıyla evrimcilerin mantığıyla bakarsak, bu bitkilerin çoktan ortam şartlarına yenik düşmüş, soylarının tükenmiş olması gerekirdi. Oysa nilüferler tüm mükemmellikleriyle bugün de karşımızdadır.
Amazon nilüferleri suyun üzerindeki ışığa ve oksijene ulaştıktan sonra, dev yapraklarının sularla dolup batmaması için kenarlarını yukarıya doğru kıvırırlar. Aldıkları tüm bu tedbirlerle yaşamlarını devam ettirebilirler ancak soylarının devamlılığı için daha fazlasına ihtiyaçları vardır. Polenlerini başka bir nilüfere taşıyacak bir canlıya ihtiyaç duyarlar. Bu canlı, kınkanatlı böceklerdir çünkü kınkanatlılar beyaz renge karşı özel bir zaafla yaratılmışlardır. Dolayısıyla da konmak için Amazon nehrinin onca cazip çiçeğinin yanında bembeyaz olan bu nilüferleri seçerler. Amazon nilüferleri de soylarının devamlılığını sağlayacak olan bu konukları geldiğinde, tüm yapraklarını kapatarak, kaçmamaları için onları hapseder ve onlara bol bol polen ikramında bulunurlar. Onları ertesi geceye kadar alıkoyduktan sonra serbest bırakır ve tekrar aynı polenleri kendi üzerlerine getirmemeleri için renklerini değiştirirler. Bembeyaz olan bu görkemli nilüferler artık pespembe olarak Amazon nehrini süslemeye başlarlar.

Hiç kuşku yoktur ki arka arkaya gelen tüm bu kusursuz ve ince hesaplanmış planlar herşeyden habersiz bir nilüfer tomurcuğunun eseri değildir. Burada özetle anlatılan tüm bu detaylar, kainattaki her varlık gibi bitkileri de yaşamaları için en uygun sistemlerle birlikte Allah'ın yarattığını bize gösterir.

Geko adlı kertenkeleler duvarları hızla tırmanarak tavana yapışabilir ve burada rahatlıkla yürüyebilirler. Uzun yıllardır yürütülen çalışmalar sonucunda hayvanın bu becerisinin hangi üstün tasarımdan kaynaklandığı bulunmuştur. Şimdiye kadar hayali film kahramanı "örümcek adam" gibi dikey yüzeylere hızla tırmanmayı sağlayacak bir yeteneğin ne şekilde mümkün olabileceği bilinmiyordu. Ancak gekonun tek bir adımı özellikle robot tasarımcıları için çok büyük gelişmelere yol açmıştır. Bunlardan bazılarını şöyle sıralayabiliriz:

- Kaliforniyalı araştırmacılar kertenkelenin yapışkanlı parmaklarının hem kuru hem de kendi kendini temizleyen yeni bir sentetik yapıştırıcının geliştirilmesine yardımcı olacağını düşünmektedirler.( http://news. bbc. co. uk/low/english/sci/tech/newsid_781000/781611. stm; BBC News Online, 7 June, 2000)


- Gekolar ayaklarıyla sürtünme kuvvetinden 600 kat daha büyük bir yapışkan güç üretirler. Bu tarz bir yapışma tekniğine sahip, geko benzeri ayaklarla yapılacak robotlar, duvarlarda yürüyerek yanan bir binadaki mahsur kalmış kişileri kurtarma için kullanılabilir. Daha küçük araçların kullanıldığı tıbbi uygulamalarda ve bilgisayar mühendisliğinde ise kuru bir yapışkan olarak büyük faydalar sağlayabilir.
- Bacaklarıyla bir yüzeye dokunduklarında otomatik olarak tepki veren yaylar gibi hareket ederler. Bu da beyni olmayan robotlar için oldukça iyi bir metottur. Gekonun ayakları defalarca kullanımda bozulmaz; kendi kendini temizler ve vakumlu ortamlarda ve su altında da çalışır.

- Nano-ameliyatlar sırasında kaygan vücut parçalarını birarada tutmaya yarayabilir.

- Araba lastiklerinin yolu daha iyi kavraması sağlanabilir.

- Teknelerin, köprülerin, iskelelerin çatlaklarının onarılmasında, uydular için düzenli bakımın sağlanmasında kullanılabilir.

Geko ile yapılacak robotların yerleri, camları, tavanları, dik zeminleri temizlemesi mümkün olabilir.

Ayrıca sadece dik yüzeylerin tırmanılması değil, karşılaşılan engellerden de etkilenme olmayacaktır.( http://www. discover. com/sept_00/featgecko. html; Fenella Saunders, Discover, September 2000, vol.21, No.9)

Solucan derisi son derece etkileyici bir tasarıma sahiptir. Hayvanın silindir biçimindeki vücudunu kaplayan derisi, çapraz sarmallar biçiminde kuşatılmış liflerden oluşur. Vücut duvarındaki kasların kasılması, derideki kısa ve kalın olan liflerin uzun ve ince bir şekle girerek hayvanın vücudundaki iç basıncın artmasına, böylece biçim değiştirmesine sebep olur. İşte solucanların hareket etmesini sağlayan mekanizmanın temeli de budur.

Şu an bu benzersiz mekanik sistem, Reading Üniversitesi Biyomimetik Merkezi'nde yeni projelere ilham kaynağı olmaktadır: Söz konusu projelerden birinde çok sayıda silindirik yapı solucandaki gibi yerleştirilmiştir. Bu arada silindirlerin içinin su emebilecek polimer bir jelle doldurulması planlanmıştır. Su kullanarak jelin şişmesi ve kasılması sağlanacaktır. Böylece kimyasal enerji yalnızca gereken yerde mekanik enerjiye dönüşecek ve meydana gelen basınç tamamen güvenli bir şekilde sarmal biçimli bir torbada hapsedilecektir. Jeldeki şişme ve kasılmanın bu şekilde kontrol altına alınmasıyla oluşturulan sistemin yapay bir kas olarak etkili biçimde çalışacağına inanılmaktadır.


Doğada basınçla hacim büyültüp küçülterek şekil değiştirme sıkça kullanılır. Solucan, ahtapot, deniz yıldızı ve anemonlar bu konuda verilebilecek en iyi örneklerdir. Oysa teknolojik aletlerde şekil değiştirme pek rastlanılır bir şey değildir. Var olan sayılı örnekte bu iş için hidrolik basınç kullanılır. Hidrolik basınç ağır nesneleri, mesela asansörleri kaldırmak için ince boruların içinde uygulanır. Hidrolik adı verilen sıvı, asansörü yukarı itmek için silindire pompalanır. Asansörü aşağı çekmek için de geri boşaltılır. Deniz yıldızları da hareket etmek için hidrolik basıncı kullanırlar. Hayvan, kolları içinde uzunlamasına yer alan tüp biçimli ayaklara sahiptir. Bunlar sıvıyla dolu olan bir iç boru sistemine bağlıdır. Kaslar boruları sıkıştırdığında oluşan hidrolik basınç, sıvıyı ayaklara gönderir. Deniz yıldızı kaslarını kullanarak hidrolik kuvvetin vücudunda bir dalga hareketi oluşturmasını sağlar. İşte bu dalga hareketi sonucu ayaklar bir ileri bir geri uzanarak deniz yıldızının ilerlemesine olanak tanır.

İnsanların örnek aldıkları her canlı, onların sahip oldukları her sistem iman eden insanlar için Allah'ın birer ayeti (delili)dir. Bu gerçek Casiye Suresi'nde şöyle bildirilmiştir:

Sizin yaratılışınızda ve türetip-yaydığı canlılarda kesin bilgiyle inanan bir kavim için ayetler vardır. (Casiye Suresi, 4)

Suda yaşayan ıstakoz ve yengeç gibi canlılar, uygun bir eş veya besin bulmak ya da avcılardan kaçmak için koku alma duyularını kullanırlar. California, Berkeley ve Stanford Üniversiteleri'nden araştırmacıların katıldığı bir çalışma, ıstakozların etraflarındaki dünyayı nasıl kokladıklarını ortaya çıkarmıştır.

Istakozlar çok hassas bir koku alma duyusuna sahiptirler. Bu duyu, koku sensörleri geliştirmeye çalışan robot mühendislerinin önünde yeni ufuklar açacak özellikler taşımaktadır. California, Berkeley Üniversitesi'nde Biyoloji Profesörü ve College of Letters & Science adlı derginin başyazarı olan Mimi A. R. Koehl bu konuyla ilgili olarak şunları söylemektedir:


Soldaki resimde istakoz, sağdaki resimde istakozun antenindeki tüylü doku görülmektedir.

Eğer dalgıçları göndermek istemediğiniz zehirli bölgelere yollayacak insansız taşıtlar ya da robotlar yapmak istiyor ve bunların kokuya göre yer belirlemesini istiyorsanız, bunlar için burun veya koku alan antenler tasarlamalısınız. ( http://www.berkeley.edu/news/media/releases/2001/11/30_lobst.html)
Istakozlar ve diğer deniz kabukluları, antenlerini koku kaynağına hafifçe vurarak koku alırlar. Bundaki amaç, antenlerinin ucunda bulunan ve kimyasal yollardan algılama yapabilen tüyleri koku molekülleriyle temas ettirmektir. Karaib Denizi'nde yaşayan Panulirus argus adlı ıstakozun antenlerinin boyu 30 cm'yi bulur. Uçlarında yarık bulunan antenin dış tarafı tüylü bir fırça görünümündedir. Burası kokulara karşı oldukça duyarlıdır.

California, Berkeley Üniversitesi'ndeki Mimi A. R. Koehl liderliğinde bir grup araştırmacı antenlerini vuran mekanik bir ıstakoz yapmışlardır. Rasta Lobsta adı verilen robot ile yapılan deneme ve gözlemlerle, ıstakozların koku almak için kullandıkları tekniğin detayları araştırılmıştır.
Istakoz antenini, koklamak istediği şeyin üzerine hızla vurmakta fakat geri çekerken daha yavaş davranmaktadır. Böylece koku bulaşmış olan su, tüylerin arasında hareket etmeyerek daha uzun kalmaktadır.

Istakozun kokuyu algılayabilmesi için ideal bir anten vuruş ve geri çekiş hızı vardır. Yapılan deneyler, antenin farklı bir hızda hareket ettirilmesi halinde suyun duyarlı tüyler arasında akmayacağını ve hayvanın koku alma duyarlılığının azalacağını göstermiştir. Bunun anlamı şudur: Istakoz çok küçük bir yerdeki en ufak koku farklılıklarını bile tüyleri vasıtasıyla yakalayabilmektedir. Bunun için de antenini özel bir teknikle kullanmaktadır.

Istakozlar dalgalı ve bulanık sularda, taşlı, kumlu veya yosunlu yüzeylerde bile rahatlıkla hareket edebilirler. Böyle zorlu ortamlarda tam donanımlı dalgıçlar bile ilerlemekte zorlanırlar. Şimdiye kadar deniz dibinde kullanılmak üzere yapılan hiçbir robot böyle bir yerde başarılı olamamıştır.

Northeastern Üniversitesi (Boston MA) Deniz Bilimleri Bölüm Yöneticisi Joseph Ayers, ıstakozu taklit eden bir robot geliştirme projesine liderlik yapmaktadır. Ayers projenin amacını şöyle açıklıyor:
Teknik hedefimiz, hedef ortamdaki hayvan sisteminin performans avantajlarını yakalamaktır.
Robotun, madenlerin bulunması ve açılan madenlerde çalışması düşünülüyor. Ayers bu işler için yine ıstakozun ne kadar uygun olduğunu ise şöyle dile getiriyor:

Robotun su altı madenlerini ararken yapacaklarının, bir ıstakozun yemek ararken yaptığı davranışlara uymasını bekliyoruz.( http://www. spie. org/web/oer/september/sep00/cover1. html)

Istakozların hızlı hareket eden suda yuvarlanıp kaymalarını engelleyecek bir yapısı vardır. Hayvan en zor şartlarda bile istediği yönde hareket edebilir ve düzgün olmayan yüzeylerde ilerleyebilir. Aynı şekilde robot da durmak ya da yerinde sabit kalmak için kuyruğunu ve pençelerini kullanacaktır.

Robottaki mikro elektromekanik algılayıcılar (MEMS) ıstakozun dünyayı algılayışını taklit etmektedir. Robot, hareketlerini su içindeki akımlara ve dalgalanmalara göre ayarlayabilecek yapıdadır. Bunun için ıstakoz robota özel su akımı algılayıcıları ve antenler takılmıştır. Gerçek bir ıstakoz, akıntının yönünü tüylü organları ile belirler. Robot ıstakozda ise aynı işi elektromekanik algılayıcıların yapması planlanmıştır.

ABD'de faaliyet gösteren DARPA adlı kuruluşun üzerinde çalıştığı projelerden biri de robot akreptir. Projede akrep modelinin seçilmesinin nedeni, robotun çölde görev yapacak olmasıdır. Akrep, yaratılışı itibariyle son derece zorlu şartlara sahip çöllerde bile yaşayabilir. Akrebin seçilmesinin bir diğer nedeni de toprakta kolaylıkla ilerleyebilmesine rağmen reflekslerinin memelilerinkinden daha basit ve taklit edilebilir olmasıdır.

Araştırmacılar robotu geliştirmeden önce gerçek akrepleri gözlemlemek için uzun zaman harcamışlardır. Akrebin tüm eklemleri işaretlenmiş ve yürüyüşü iki kamera ile kayda alınmıştır.Daha sonra bu akrebin yürüş esnasında bacakları arasındaki organizasyon ve koordinasyon çıkarılarak model akrebe uyarlanmıştır.

Akrep projesinde robotun görevi sadece çölde 40 kilometre ötede bulunan bir hedefe girmek ve geri dönmektir. Ancak robotun bu görevi hiçbir yönlendirme almadan kendi kendine yapması hedeflenmiştir.


Boston North Eastern Üniversitesi'nden Frank Kirchner ve Alan Rudolph tarafından tasarlanan 50 santimetrelik akrebin karmaşık sorunları çözme yeteneği yoktur. Robot akrep bir sorunla karşılaştığında sadece refleksleriyle hareket etmektedir. Bu, onu durduracak herhangi bir şeyin mesela bir kayaya takılmanın üstesinden gelmesine olanak sağlamaktadır. Robotun önünde iki tane ultrasonik algılayıcı vardır. Eğer boyunun yarısından yüksek bir engelle karşılaşırsa etrafını dolaşmaya çalışacaktır. Eğer sol taraftaki dedektör bir engel teşhis ederse otomatik olarak sağa yönelecektir. Bu robottan belirli bir bölgeye gidip, kuyruğundaki kamera ile üsse resim göndermesi de istenebilmektedir.

ABD ordusu akrebin Arizona'daki denemelerinden çok etkilenmiştir. Robotun yolunu bulma yeteneğinin özellikle şehirler gibi, engellerle dolu olan savaş alanlarında faydalı olması umulmaktadır. (http://www. newscientist. com/news/news. jsp?id=ns9999637)

Tüm bedenimizi her saniye sürekli olarak kontrol eden ve ip üstünde yürüyen bir cambazın ihtiyaç duyduğu hassaslıkta ayarlar yapabilen denge sistemimizin önemli bir parçası iç kulakta yer alır.
İç kulaktaki bu denge merkezine "labirent" adı verilir. Labirent, her biri yarım daire şeklindeki üç küçük kemikten oluşur. Bu kemiklerin içleri bir tüp gibi boştur. Yarımdairelerin çapları 6,5 milimetre, içlerindeki boşluğun, yani kesitlerinin çapı ise 0,4 milimetre boyutundadır. Her üç yarım daire de çok özel açılarla birbirlerine bağlanırlar. Bu açılar incelendiğinde, her yarımdairenin üç boyutlu geometrinin temeli olan x, y ve z koordinatlarına karşılık geldiği ortaya çıkmıştır.


Denge, insan bedenindeki en karmaşık sistemler tarafından sağlanan olağanüstü bir kavramdır. İnsanın dengesi, bir masanın ya da sandalyenin dengede durmasına benzemez. Çünkü insan vücudu sürekli bir hareket halindedir. Bu yüzden vücudun ağırlık merkezi sürekli olarak yeniden hesaplanır ve kaslara bu hesaba uygun emirler verilir.

Labirentte bulunan bu üç yarımdairenin her birinin içinde, özel bir sıvı yer alır. Bu sıvının içinde gezindiği yüzeyde de tüycüklü hücreler vardır. Biz başımızı sağa sola çevirdiğimizde, yürüdüğümüzde ya da herhangi bir hareket yaptığımızda, bu yarımdairelerin içindeki sıvı hareket eder ve tüycükleri titreştirir. Tüycüklerdeki bu titreşim, aynı salyangozda olduğu gibi tüycüklerin bağlı olduğu hücrelerin iyon dengesini değiştirir ve elektrik sinyali üretir.

İç kulaktaki labirentte üretilen bu elektrik sinyalleri, labirentten çıkan sinirler aracılığıyla beynimizin arka tarafındaki "beyincik" adlı organa iletilir. Labirentten beyinciğe mesaj taşıyan sinirler incelendiğinde, bunların içinde 20 bin ayrı küçük sinir lifi olduğu saptanmıştır.

Beyincik, iç kulaktaki labirentten gelen bu bilgileri her an yorumlar. Ancak dengeyi sağlamak için başka bilgilere de ihtiyaç vardır. Bu nedenle beyincik, gözlerden ve vücudun dört bir yanındaki kaslardan da devamlı olarak bilgi alır. Tüm bu bilgileri müthiş bir hızla analiz eder ve vücudun yerçekimine göre konumunu hesaplar. Bundan sonra ise, bu hesaplamaya dayanarak, kasların nasıl bir hareket yapmaları gerektiğini belirler. Ortaya çıkan sonuç, kaslara yine sinirler aracılığıyla emir olarak bildirilir.

Bu olağanüstü işlemler, saniyenin yüzde biri kadar bile sürmeyen bir zaman dilimi içinde gerçekleşir. Biz de, içimizde gerçekleşen bu mucizenin hiç farkında olmadan rahatlıkla yürür, koşar, en zor sporları yaparız. Oysa bu işlerin tek bir anı için vücudumuzda gerçekleştirilen hesaplamaları kağıda döksek, binlerce sayfa formül yazmamız gerekecektir.

Denge sistemi, içiçe geçmiş birçok kompleks mekanizmanın uyum içinde çalışmasıyla işlev gören kusursuz bir sistemdir. Modern bilim ve teknoloji ise, bu sistemi taklit etmek bir yana, çalışma prensiplerini dahi ayrıntılarıyla çözmeyi başaramamıştır.

Elbette böylesine kompleks bir sistemin evrim teorisinin iddia ettiği gibi rastlantılarla ortaya çıkması mümkün değildir. Bu sistem, Yüce Allah'ın varlığının ve sonsuz kudretinin delillerinden biridir.
Bu gerçeğin farkına varan insanın sorumluluğu ise, kendisine böyle bir organı vermiş olan Allah'a şükredici olmaktır.

Robot bilimi ile uğraşanların en sık karşılaştıkları sorunlardan biri de dengedir. En son teknoloji ürünü donanıma sahip olarak yapılan robotlar bile yürürken dengelerini kaybedebilmektedir. 3 yaşındaki bir çocuğun çok rahatlıkla yapabildiği "dengeyi yeniden kurma" özelliğinden yoksun olan robotlar bu durumda işlevsiz kalmaktadır. Nitekim NASA'nın Mars görevi için hazırladığı bir robot, bu sorun yüzünden hiç kullanılamamıştır. Robotik uzmanları bunun üzerine, denge sağlayıcı bir düzenek kurmak yerine dengesi hiç bozulmayan bir canlıyı, yılanları taklit ederek soruna çözüm bulmaya çalışmışlardır.


Yılanların vücutları diğer hayvanların yapamayacağı şekilde, deliklere ve çatlaklara girebilecek şekilde yaratılmıştır. Omurgalılar gibi sert iskeletleri ve uzuvları yoktur. Gövdelerinin çapını büyütüp küçültebilirler. Dallara sarılabilir ve kayaların üstünden geçebilirler. Yılanların bu özellikleri NASA Araştırma Merkezi tarafından geliştirilen ve "snakebot" adı verilen bir insansız uzay aracına ilham kaynağı olmuştur. Tasarlanan bu yılan robotta, robotun hiçbir engele takılmadan devamlı denge halinde ilerlemesi hedeflenmiştir.

DOĞADAKİ BENZERSİZ SİSTEMLER

Bilim adamları her geçen gün doğada keşfettikleri benzersiz yapılar ve sistemler karşısında hayrete düşmekte ve bunlara duydukları hayranlığı insanlık yararına yeni teknolojiler üretmek için kullanarak göstermektedirler. Doğada var olan mükemmel sistemlerin, uygulanan olağanüstü tekniklerin insanoğlunun akıl ve bilgisinin çok üstünde olduğunun, mevcut problemlere benzersiz çözümler sunduğunun farkına varan bilim adamları, artık senelerce uğraşarak çözüm getiremedikleri pek çok konuda doğadaki tasarımların yardımına başvurmaktadırlar. Bunun sonucu olarak da kısa zamanda, başarılı sonuçlar elde etmeleri mümkün olmaktadır. Ayrıca doğanın taklidi ile birlikte bilim adamları gerek vakit ve emek açısından, gerekse maddi kaynakların isabetli kullanılması bakımından da çok önemli kazançlar sağlamaktadırlar.

Doğadaki tasarımların üstünlüğünün kabul edilmesi ile birlikte, kuşkusuz evrimciler yeni bir hayal kırıklığı, yeni bir umutsuzluk yaşamışlardır. Çünkü evrimcilerin, canlıların zaman içerisinde basitten komplekse doğru bir gelişim içinde oldukları ve bu canlılardaki tasarımların da tesadüf eseri oluştukları yönündeki bilim dışı iddialarının geçersizliği bir kez daha ispatlanmıştır. Ayrıca şimdiye kadar tasarımlarına hayranlık duydukları, benzersiz sanatını, ilmini ve aklını takdirle övdükleri gücün tesadüfler olamayacağını, bunların ancak çok üstün Yaratıcımız'ın eseri olabileceğini istemeyerek de olsa kabul etmek durumunda kalmışlardır.

Çok kapsamlı bir uçak maketi satın aldığınızı düşünün. Yüzlerce küçük parçadan oluşan bu maketi yapmak için nasıl bir yol izlersiniz? Kuşkusuz bunun için yapacağınız ilk şey, kutunun üzerindeki resimlere bakmak ve içindeki montaj bilgilerinden faydalanmak olacaktır. Çünkü bir maketi yaparken montaj talimatlarını izlemek, yapılacak işin süresini kısaltır, o maketin en hatasız ve mükemmel biçimde yapılmasını sağlar.

Uçağın montajı ile ilgili bilginiz olmasa da, eğer elinizde benzer bir model varsa maketi yine yapabilirsiniz. Çünkü daha evvel gördüğünüz uçak modelinin tasarımı, onun benzerinin yapımında size önemli bir rehber olacaktır. Aynı mantıkta, doğada var olan kusursuz bir tasarımı örnek almak da, benzer işlevlere sahip bir teknolojik aygıtın tasarım ve montajının en kısa yoldan ve en mükemmel biçimde gerçekleştirilmesini sağlar. Bunun bilincinde olan pek çok bilim adamı ve araştırma-geliştirme (ARGE) uzmanı da yapacakları her yeni çalışmadan önce, bunun canlılardaki örneklerini araştırmakta, bunlardaki sistem ve tasarımları örnek alarak onları taklit etmektedirler. Diğer bir deyişle bilim adamları, Allah'ın doğada yarattığı canlıları incelemekte ve bunlardan yararlanarak yeni teknolojiler geliştirmektedirler.

Bu yönelim yeni bir bilim dalı doğurmuştur: "Biyomimetik". 'Doğadaki canlılardan taklit' anlamına gelen ve özellikle son dönemlerde teknoloji dünyasında adından sıkça söz edilen bu bilim dalı, insanlara önemli ufuklar açmıştır.

Canlılarda bulunan sistemlerin yapısını taklit etme bilimi olarak bilinen biyomimetiğin ortaya çıkışı, bugün evrim teorisini savunan bilim adamları için de çok büyük bir hezimet olmuştur. Çünkü, evrim basamağının en gelişmiş canlısı olarak kabul ettikleri insanın sözde kendinden daha ilkel olması gereken canlıları taklit etmeye çalışması, onlardan ilham alması evrimciler açısından kabul edilemez bir durumdur.
İlkel sayılan canlıların özellikleri daha gelişmiş olanlar tarafından örnek alınıyorsa bu, gelecekte var olacak teknolojilerin büyük bir bölümünün, bu sözde ilkel canlıların tasarımları üzerine kurulu olması demektir. Bu ise, çevrelerine uyum sağlayamayan ilkel canlıların yok olup kalanların geliştiğini savunan evrim teorisinin mantığına tamamen ters bir durumdur.

Evrim teorisini savunanları kısır bir döngüye sokan bu bilim dalı, gün geçtikçe gelişmekte ve teknoloji dünyasına hakim olmaktadır. Bu doğrultuda "biyomimikri" olarak isimlendirilen ve "canlıların davranışlarını taklit etme bilimi" anlamına gelen yeni bir bilim dalı daha ortaya çıkmıştır.
Alemlerin Rabbi olan Allah canlılarda eşi benzeri olmayan eksiksiz sistemler var edendir. Allah herşeyi kusursuzca yaratandır. Bunu kabul etmek istemeyenler ahiret günü kesinlikle dönüşü olmayacak bir pişmanlık yaşayacaklardır.

Bu sitede biyomimetik ve biyomimikrinin doğada mevcut olan kusursuz sistemleri örnek alarak katettiği gelişmeler ele alınmaktadır. Daha önce pek dikkat çekmemiş, ancak canlılığın yaratılmasından bu yana doğada var olan benzersiz tasarımlar incelenmektedir. Aynı zamanda, evrim teorisini savunanlara söyleyecek tek bir söz dahi bırakmayan doğadaki akıl dolu mekanizmaların hepsinin alemlerin Rabbi olan Allah'ın örneksiz yaratmasının eseri olduğu anlatılmaktadır.

AKILLI TASARIM YANİ YARATILIŞ

Allah'ın yaratmak için tasarım yapmaya ihtiyacı yoktur.

"Tasarım" ifadesinin doğru anlaşılması önemlidir. Allah'ın kusursuz bir tasarım yaratmış olması, Rabbimiz'in önce plan yaptığı daha sonra yarattığı anlamına gelmez. Bilinmelidir ki, yerlerin ve göklerin Rabbi olan Allah'ın yaratmak için herhangi bir "tasarım" yapmaya ihtiyacı yoktur. Allah'ın tasarlaması ve yaratması aynı anda olur. Allah bu tür eksikliklerden münezzehtir.

Allah'ın bir şeyin ya da bir işin olmasını dilediğinde, onun olması için yalnızca "Ol" demesi yeterlidir. Ayetlerde şöyle buyurulmaktadır:

Bir şeyi dilediği zaman, O'nun emri yalnızca: "Ol" demesidir; o da hemen oluverir. (Yasin Suresi, 82)
Gökleri ve yeri (bir örnek edinmeksizin) yaratandır, O, bir işin olmasına karar verirse, ona yalnızca "Ol" der, o da hemen oluverir. (Bakara Suresi, 117)

Doğadaki mükemmel tasarımlar Rabbimiz'in bize verdiği çok büyük nimetlerdir. Bu tasarımları taklit etmek ve örnek olarak almak ise insanoğlunu sürekli iyiye, doğruya yöneltecek bir devrimdir. Ne var ki bilim dünyası doğadaki tasarımların çok büyük bir kaynak oluşturduğunu ve günlük hayata geçirilmesi gerektiğini, ancak son birkaç yıl içerisinde fark edebilmiştir.
Bilim otoritesi olarak kabul edilen pek çok yayın organı da doğadaki üstün yapıların içerdiği tasarımların insanlara yol göstermesi açısından çok büyük bir kaynak olduğunu kabul etmektedir. Örneğin Nature dergisi bu gerçeği şöyle ifade eder:
Doğadaki mekanizmalar üzerinde yapılan çalışmalar göstermektedir ki, filden proteine kadar pek çok yapı, tasarımcılar ve mühendisler için zengin bir fikir havuzu oluşturmaktadır. Üstelik bu havuzun derinliğini artırma potansiyeli de çok yüksektir.( Nature. 18 0cak 2001)
Şüphesiz bu kaynağı doğru yönde kullanmak ve teknolojiye geçirmek, insanoğlunu çok hızlı bir gelişim sürecine sokacaktır. Biyomimetik dalında uzman olarak gösterilen Janine M. Benyus da, doğayı taklit ettiğimiz takdirde yiyecek ve enerji üretimi, bilgi depolama, sağlık gibi birçok alanda kendimizi rahatlıkla geliştirebileceğimizi belirtmiştir. Janine Benyus, yapraklardan esinlenilerek yapılan ve Güneş Sistemi ile çalışan mekanizmaları, hücreler gibi sinyal veren bilgisayarların üretimini, sedeften taklit edilerek yapılan kırılmaya dayanıklı seramikleri bu gelişime örnek olarak vermiştir.( http://www. biomimicry. org/faq. Htm)
Görüldüğü gibi, biyomimetik devrimi günlük hayatımızı ve yaşamımızı derinden etkileyecek, insanların daha rahat ve konforlu yaşamasını sağlayacaktır.

Janine Benyus ve yazdığı "Biomimicry" isimli kitap.

Gerek biyomimetik, gerekse biyomimikri doğadaki modelleri inceleyen, sonra da bu tasarımları taklit ederek veya bunlardan ilham alarak insanların problemlerine çözüm getirmeyi amaçlayan yeni bilim dallarıdır.

Biyomimetik, insanların doğada bulunan sistemleri taklit ederek yaptıkları maddelerin, aletlerin, mekanizma ve sistemlerin tümünü ifade eden bir terimdir. Doğadaki tasarımlar örnek alınarak yapılan aletlere, özellikle nanoteknoloji, robot teknolojisi, yapay zeka (AI), tıbbi endüstri ve askeri donanım gibi alanlarda kullanılmak için gerek duyulmaktadır.

Biyomimikri, ilk defa Montanalı bir yazar ve bilim gözlemcisi olan Janine M. Benyus tarafından ortaya atılmış bir kavramdır. Türkçe karşılığı "biyotaklit" olan bu kavram, daha sonra pek çok kişi tarafından yorumlanmış ve uygulamaya geçirilmiştir. Biyomimikri hakkında yapılan yorumlardan biri şöyledir:

Biyomimikrinin ana teması doğadan model, ölçü ve akıl olarak öğrenecek çok şeyimiz olduğudur. Bu araştırmacıların ortak noktası, doğadaki tasarıma saygı göstermeleri ve insanların karşılaştıkları problemlerin çözümünde bunları kullanarak ilham almalarıdır. ( http://www. biomimicry. org/reviews_text. Html)

Ürün kalitesini ve verimini artırmada doğadan faydalanan şirketlerden biri olan Interface'in ürün stratejisti David Oakley de biyotaklit konusunda şunları söyler:

Doğa, benim iş ve tasarım konularında akıl hocam, yaşam tarzım için bir model. Doğanın sistemi milyonlarca senedir çalışıyor… Biyotaklit, doğadan öğrenmenin bir yoludur. (http://www.bfi.org/trimtab/spring01/TrimtabSpring01.pdf)

Nitekim bilim adamları hızla yaygınlaşan bu fikri benimsemişler, önlerindeki benzersiz ve kusursuz modelleri örnek alarak çalışmalarına hız kazandırmışlardır. Özellikle endüstri alanında doğadaki gibi uygun hammaddeler ve ekonomik sistemler geliştirmeyi amaçlayan bilim adamları ve araştırmacılar, şimdi el birliğiyle doğayı nasıl taklit edeceklerinin yollarını araştırmaktadırlar.

Doğadaki tasarımlar en az malzeme ve enerji ile en fazla verim almaları, kendi kendilerini onarma özellikleri, geri-dönüşümlü ve doğa-dostu olmaları, sessiz çalışmaları, estetik, dayanıklı ve uzun ömürlü olmaları bakımından teknolojik çalışmalara örnek teşkil ederler. High Country News adlı bir gazetede biyomimetik bilimsel bir hareket olarak tanımlanmış ve şöyle bir yorum yapılmıştır:

Doğal sistemleri model alarak, bugün kullandığımızdan çok daha uzun süreli teknolojiler oluşturabiliriz.( http://www. biomimicry. org/reviews_text. html; Michelle Nijhuis, Hidgh Country News, July 06, 1998, Vol.30, No.13)
Biomimicry adlı kitabın yazarı Janine M. Benyus ise, doğada gördüğü mükemmellikler üzerinde düşünerek, doğadaki modellerin taklit edilmesi gerektiğine inanmıştır. Onu böyle bir yaklaşımı savunmaya yönelten örneklerden bazıları şunlardır:

  • Arı kuşlarının 10 gramdan daha az bir yakıtla Meksika Körfezi'ni geçebilmeleri,
  • Yusufçukların en iyi helikopterlerden bile daha iyi manevra yapabilmeleri,
  • Termit kulelerinde bulunan iklimlendirme ve havalandırma sistemlerinin, donanım ve enerji sarfiyatı bakımından insanların yaptıklarından çok daha üstün olmaları,
  • Yarasanın çok-frekanslı ileticisinin, insanların yaptığı radarlardan daha verimli ve duyarlı çalışması,
  • Işık saçan alglerin vücut fenerlerini aydınlatmak için çeşitli kimyasalları biraraya getirmeleri,
  • Kutup balıkları ve kurbağaların donduktan sonra yeniden hayata dönmeleri ve organlarının buz nedeniyle hasara uğramaması,
  • Bukalemunun ve mürekkep balığının, bulundukları ortamla tam bir uyum içinde olacakları şekilde derilerinin renklerini, desenlerini anında değiştirmeleri,
  • Arıların, kaplumbağaların ve kuşların haritaları olmadan uzun mesafeli yolculuklar yapabilmeleri,
  • Balinaların ve penguenlerin oksijen tüpü kullanmadan dalmaları,
  • DNA sarmalının bilgi depolama kapasitesi,
  • Yaprakların fotosentez işlemi ile, yılda 300 milyar ton şeker üretimi yaparak dünyanın en büyük kimyasal işlemini gerçekleştirmesi...

Yukarıda sadece birkaç örneğine yer verdiğimiz doğadaki hayranlık uyandıran bu gibi mekanizma ve tasarımlar, teknolojinin birçok alanını zenginleştirme potansiyeline sahiptir. Bilgi birikimimizin artması ve teknolojik imkanların gelişmesi ile birlikte bu potansiyel her geçen gün daha da ortaya çıkmaktadır.
Örneğin 19. yüzyılda doğanın taklidi sadece estetik açıdan uygulama sahasına sahipti. Dönemin ressam ve mimarları doğadaki güzelliklerden etkilenmiş, yaptıkları eserlerde bu yapıların dış görünüşlerini örnek almışlardı. Ama doğadaki tasarımların olağanüstülüğünün ve bunların taklidinin insanlar için fayda sağlayacağının anlaşılması, ancak doğal mekanizmaların moleküler seviyede incelenmesiyle başlamıştır. Çünkü doğadaki kusursuz düzen, detaya inildikçe daha da şaşırtıcı bir boyut kazanmaktadır.

Biyomimetikle ortaya çıkan malzeme ve aletler gelecekte de kullanılabilecek yapıdadır: Yeni solar hücreler, gelişmiş robotlar ve uzay gemilerinin malzemeleri gibi... Bu bakımdan doğadaki tasarımlar çok ileri bir teknolojiye ufuk açmaktadır.

Her örümcek, farklı işlevler için farklı niteliklere sahip iplikler üretir. Diatematus isimli örümcek, karnındaki salgı bezlerini kullanarak yedi farklı tipte ipek üretebilir. Bu üretim metodunun benzerleri günümüzde birçok tekstil makinesinde kullanılmaktadır. Ancak bu örümcekteki birkaç milimetreküplük üretim yeri, tekstil makinelerinin devasa boyutları ile kıyas bile kabul etmez. Örümceğin bir başka üstünlüğü ise ürettiği ipliğin tamamen geri dönüşümlü olmasıdır. Örümcek bozulan ağını yiyerek yeniden iplikçik üretebilir.

Örümceklerin İpeği Çelikten Daha Sağlam


Doğada pek çok böcek ipek üretir ama örümceğin ürettiği ipek diğerleri ile kıyaslandığında büyük farklılıklar sergiler.

Bilim adamlarına göre örümcek ağı yeryüzündeki en sağlam malzemelerden biridir. Bununla birlikte örümcek ağının özelliklerinin hepsi sayılacak olursa çok uzun bir liste elde edilebilir. Fakat bu listedeki birkaç madde bile bilim adamlarının bu konuda ne kadar haklı olduklarını ortaya koymaktadır. Örümcek ipeğinin özelliklerinden birkaçını şöyle sıralayabiliriz:

  • Örümceklerin ürettiği ve çapı bir milimetrenin binde birinden daha küçük olan ipek ipliği, aynı kalınlıktaki çelik telden beş kat daha sağlamdır.
  • Kendi uzunluğunun dört katı kadar esneyebilir.
  • İpek aynı zamanda son derece hafiftir. Bu hafifliği şöyle bir örnekle de tarif edebiliriz: Dünyanın çevresi boyunca uzatılacak bir ipek ipliğinin ağırlığı sadece 320 gram gelir.

Bu özellikler tek tek bazı malzemelerde bulunabilir. Ancak hepsinin birarada bulunması son derece özel bir durumdur. Çünkü hem sağlam hem esnek bir malzeme bulabilmek oldukça zordur. Örneğin çelik halat en sağlam malzemelerden biridir. Fakat kauçuk halatlar gibi esnek olmadıklarından zamanla deforme olurlar. Kauçuk halatlar da kolay kolay deforme olmamalarına rağmen yeterince dayanıklı olmadıkları için ağır yükleri kaldıramazlar.


Şöyle bir düşünelim… Küçücük bir canlının ürettiği ip, nasıl oluyor da insanoğlunun yüzyıllarca edindiği bilgi birikimiyle yaptığı kauçuk halatlardan daha üstün özellikler taşıyabiliyor?

Örümcek ipliğini bu kadar üstün yapan şey, ipeğin kimyasal yapısında ve üretim merkezinde gizlidir. Örümcek ipliklerinin hammaddesi, örgülü helezonik amino asit zincirlerinden oluşan "keratin" adlı proteindir. Keratin; saç, tırnak, tüy, deri gibi birbirinden çok farklı maddelerin yapı taşıdır ve oluşturduğu tüm maddelerde koruyucu özelliği ile ön plana çıkar. Ayrıca keratinin esnek hidrojen bağlarla bağlanmış amino asitlerden oluşması, bu maddelere çok esnek olma özelliğini kazandırır.

Bu esneklik Amerika'nın ünlü bilim dergilerinden Science News'de şöyle bir benzetme ile tarif edilmiştir:
İnsan ölçülerine göre, balık ağı boyutlarındaki bir örümcek ağı, bir yolcu uçağını yakalayabilir. ( http://www. watchtower. org/library/g/2000/1/22/article_02. htm)



Örümceğin ipek üretim bölgesinden ayrıntılı bir görünüm.

Örümceklerin kuyruklarında altı bölümden oluşan ve ipek kesesi denilen bir bölge vardır. Keselerin her birinde farklı salgılar üretilir. Bu keselerin salgıları değişik kombinasyonlarda birleşerek farklı türdeki ipek ipliklerini meydana getirirler. Keseler arasında ise büyük bir uyum vardır. İpek üretimi sırasında örümceğin vücudunda bulunan ve son derece gelişmiş özelliklere sahip olan pompalar, vanalar ve basınç sistemleri kullanılır. Üretilen ham ipek, musluk gibi çalışan bölümlerden lif şeklinde dışarı akıtılır.

Örümcek bu muslukların püskürtme basıncını da dilediği şekilde değiştirebilir. Bu, son derece önemli bir özelliktir. Çünkü bu işlem sayesinde sıvı keratini oluşturan moleküllerin yapısı da değişmiş olur. Valfler üzerindeki kontrol mekanizması sayesinde iplik üretilirken ipliğin çapı, direnci ve elastikiyeti de değiştirilebilir. Böylece ipeğin kimyasal yapısı değiştirilmeden ipliğe istenilen fiziksel özellikler kazandırılır. Eğer iplik üzerinde daha köklü bir değişim isteniyorsa bir başka bezin kullanımına geçilmesi gerekmektedir. Salgılanan farklı özelliklere sahip iplikçikler arka ayakların mükemmel kullanımı sayesinde istenilen doğrultuya yönlendirilir.

Örümcekteki bu kimyasal mucizeyi tam olarak taklit etmek mümkün olduğunda, gerektiği kadar esneyebilen emniyet kemerleri, son derece sağlam dikişler, iz bırakmayan ameliyat iplikleri, çok hafif kablolar, kurşun geçirmez kumaşlar gibi çok sayıda faydalı malzemenin üretimi yapılabilecektir. Üstelik bu malzemelerin üretiminde zararlı ve zehirli madde de kullanılmamış olacaktır.



Örümcekler avlarını yakalamak için son derece nitelikli ağlar kurarlar. Ağ, havada uçan bir sineğin hareket enerjisini emerek durdurabilecek mükemmel bir tasarıma sahiptir. Uçak gemilerinde güverteye inen uçakları yakalamak için kullanılan gergin teller de örümceğin kullandığı sistemle benzeşir. Bu teller, 250 km/s hızla inen, tonlarca ağırlıkta bir uçağın kinetik enerjisini, tıpkı ağın yaptığı gibi güvenli bir şekilde emerek durdurur.

Örümceklerin ürettikleri ipekler olağanüstü özelliklere sahip yapı malzemeleridir. Gerilme esneklikleri çok fazla olduğundan örümcek ipeğini koparmak için gereken enerji benzer diğer biyolojik materyalleri koparmak için gereken enerjiden on kat daha fazladır. ( http://iago. stfx. ca/people/edemont/abstracts/spider. Html)

Örümceğin ürettiği ipi parçalamak, aynı kalınlıktaki naylon bir ipi parçalamaktan çok daha fazla güç sarf etmeyi gerektirir. Örümceğin böylesine sağlam bir iplik üretebilmesinin başlıca sebeplerinden biri, temel protein bileşenlerinin kristalleşmesini ve katlanmasını kontrol ederek düzenli bir yapıda yardımcı bileşikler eklemeyi başarmasıdır. Örgü maddesi sıvı kristal olduğundan, örümcekler bu esnada minimum kuvvet harcarlar.
Örümceklerin yaptıkları ipek, bilinen doğal ya da sentetik liflerden çok daha güçlüdür. Ayrıca örümceğin ürettiği ipeği, ipek böceklerindeki gibi direkt olarak alıp kullanmak mümkün değildir. Bu nedenle kullanım için mevcut alternatif "yapay üretim"dir. Araştırmacılar da, öncelikle örümceğin ipeğini sonra da bu ipeğin nasıl üretildiğini çok kapsamlı olarak araştırmaktadırlar. Araneus diadematus adı verilen bahçe örümceği üzerinde çalışan Dr. Fritz Vollrath, bu yöntemin önemli bir bölümünü keşfetmeyi başarmıştır. Vollrath araştırmalarının sonuçlarını şöyle anlatır:



Doğayı ve tüm canlıları yaratan Allah'ın ilminin ne kadar büyük olduğunu anlamak için sadece şu örnek bile yeterlidir: Örümcekler çelikten 5 kat daha sağlam ipek ipliği üretirler. Bizim en yüksek teknoloji ürünümüz olan Kevlar ise, yüksek sıcaklıklarda, petrol türevi malzeme ve sülfürik asit kullanılarak yapılır. Bu üretim sırasında enerji girdisi aşırı derecede yüksektir ve oluşan yan ürünler de çok zehirlidir. Üstelik sağlamlık açısından Kevlar, örümcek ipliğine göre zayıftır.

Örümcekler ipeklerini, asitleyerek sertleştiriyorlardı. İpek, oluştuğu kanala girmeden önce, sıvı proteinlerden oluşuyordu. Kanalın içinde özel hücreler, ipek proteinlerindeki suyu kendilerine çekiyorlardı. Hidrojen atomları ise diğer bir kanalda pompalanan suyu alıyor ve bir asit havuzu oluşturuyordu. İpek proteinleri asit ile biraraya geldiğinde de, birinden diğerine bir köprü oluşturuyordu. Böylece son derece kuvvetli bir ipek oluşuyordu. Örümceğin ipeği, kurşun geçirmez yeleklerde, bisiklet kasklarında kullanılan ve bir tür plastik olan "kevlar" ile karşılaştırıldığında on kat daha sağlamdır. ( http://faculty. washington. edu/yagerp/silkprojecthome. html;Gosline, J.M. , M.E.Demont, et al.(1986)."The structure and properties of silk. " Endeavour 10(1): 37-43)

Bilim adamlarının ileri teknolojinin imkanlarını kullanarak elde ettikleri Kevlar, insan yapımı en güçlü sentetiktir. Fakat örümceğin ipeği Kevlardan çok daha üstün özelliklere sahiptir. Örneğin sağlamlığının yanı sıra örümcek ipeğinin yeniden işlenip tekrar tekrar kullanılması da mümkündür.

Eğer bilim adamları örümceğin iç işlemlerini başarılı bir şekilde kopyalamayı başarabilir, protein katlanmasının kusursuz olmasını sağlayabilir ve örgü maddesinin gen dizilim bilgisini ekleyebilirlerse çok özel özellikleri olan ipek temelli ipleri endüstriyel olarak üretmeleri mümkün olabilecektir. Bu nedenle örümcek ipliğindeki örme işleminin ne şekilde olduğu anlaşılabilirse, insan yapımı materyallerdeki başarının da artacağı düşünülmektedir.

Bilim adamlarının seferber olup araştırdıkları örümcek ipliği, 380 milyon yıldan beri örümcek tarafından kusursuzca örülmektedir. ( http://faculty. washington. edu/yagerp/silkprojecthome. html; [(1) Shear, W.A. , J.M.Palmer, et al.(1989)."A Devonian Spinneret: Early Evidence of Spiders and Silk Use. " Science 246:479-481) Bu durum, kuşkusuz Allah'ın kusursuz yaratışının delillerinden biridir. Şüphesiz bu olağanüstü olayların hepsi de Allah'ın kontrolündedir ve O'nun izniyle gerçekleşmektedir. Bu gerçek, bir ayette şöyle belirtilir:

... O'nun, alnından yakalayıp-denetlemediği hiçbir canlı yoktur… (Hud Suresi, 56)

Ağacın Sertliği Dizaynında Saklı

Bitkisel kompozitler diğer canlılardakinden farklı olarak, kolajenden çok "selüloz" adı verilen bir maddeden oluşurlar. Ağacın sert ve dayanıklı yapısı, ürettiği bu selüloz lifler sayesinde oluşur. Çünkü selüloz, sert ve suda çözünemeyen bir maddedir. İşte tahtanın inşaatlarda kullanılmasını avantajlı kılan da selülozun bu özelliğidir. "Gerilebilen ve örneği bulunmayan" bir malzeme olarak tanımlanan selüloz, tahta binaların asırlarca ayakta durmasında, binaların, köprülerin, mobilyaların ve pek çok aletin yapımında diğer tüm malzemelerden daha fazla kullanılmaktadır.

Tahta, düşük hızdaki darbelerin enerjisini emerek, oluşan hasarı belirli bir yerde sınırlandıran çok etkili bir maddedir. Özellikle de darbenin tahtanın damarlarına dik açıyla geldiğinde oluşan hasarın azaltılmasında çok daha iyi sonuçlar elde edilir. Yapılan araştırmalarda tahta cinsleri arasında da dayanıklılık bakımdan farklılıklar tespit edilmiştir. Bu konudaki belirleyici faktörlerden ilki yoğunluktur. Daha yoğun olan tahtalar darbe sırasında daha fazla enerji emerler. Damarların sayısı, boyutu ve dağılımı da tahtaya uygulanan darbenin deformasyonunun azaltılmasında etkili olan faktörlerdir.



Tahtanın tasarımı örnek alınarak yapılan malzemelerin, kurşun-geçirmez giyimde kullanılabilecek kadar dayanıklı olacağına inanılıyor.

İkinci Dünya Savaşı'nın "Mosquito"ları -şimdiye kadarki en çok hasar tolere edebilen uçaklar- hafif balsa tahtasının daha yoğun olan kontrplak tabakaları arasında sıkıştırılmasından yapılıyordu. Tahtanın sertliği, ona çok güvenli bir malzeme niteliği kazandırır. Tahta kırılırken çatlamaları izleyebileceğiniz kadar yavaş bir kırılma gerçekleşir ve bu özellik tedbir alınması için vakit kazandırmış olur.

Tahta, uç uca eklenmiş uzun, oyuk hücrelerin oluşturdukları paralel kolonlardan oluşmuştur. Çevrelerinde ise spiraller halinde selüloz lifler sarılıdır. Ayrıca bu hücreler kompleks polimer yapıda reçineden yapılmış bir madde içindedir. Spiral olarak sarılmış bu tabakalar hücre duvarının toplam kalınlığının %80'ini oluşturur ve ana yükü çeken bileşen de bu kısımdır. Bir tahta hücresi içe çöktüğünde, kendisini çevreleyen hücrelerden koparak darbenin enerjisini emer. Çöküntüler lifler boyunca uzun bir çatlak oluşturdukları halde tahta bozulmadan kalır. Tahta, kırık bile olsa belli bir miktardaki yükü taşıyabilecek güçtedir. Tahtanın tasarımı taklit edilerek yapılan bir materyal, günümüzde kullanılan diğer sentetik materyallerden 50 kat daha fazla dayanıklılık göstermiştir. (Julian Vincent, New Scientist, "Tricks of Nature", 17 August 1996, vol.151, No.2043, s.40)

Tahtanın bu dizaynı günümüzde de, mermi ve bomba gibi yüksek hızlı ve tahribatı güçlü parçalara karşı koruma sağlamak için geliştirilen maddelerde taklit edilmektedir.

Buraya kadar verilen birkaç örnekte de görüldüğü gibi, doğadaki malzemeler, son derece üstün tasarımlara sahiptir. Bir sedefin ya da bir tahtanın böylesine dayanıklı olması, özel yapılarının bulunması tesadüf eseri değildir. Açıkça görülmektedir ki, söz konusu malzemelerde üstün bir tasarım vardır. Her detay -katmanların inceliği, sıklığı, damarların sayısı, dizilimi vs.- bu dayanıklılığı sağlamak üzere özel olarak planlanmış ve kusursuz bir düzenle yaratılmıştır. Allah, bir Kuran ayetinde etrafımızda bulunan herşeyi Kendisinin yarattığını şöyle bildirir:

Göklerde ve yerde ne varsa tümü Allah'ındır. Allah, herşeyi kuşatandır. (Nisa Suresi, 126)
et motorlarındaki güçlü pervanelerin yapımında kullanılacak malzemenin geliştirilmesinde, inciyi oluşturan sedefin yapısı taklit edilmektedir. Pek çok yumuşakçanın kabuğunun iç katmanındaki sedefin %95'i tebeşirdir; fakat sedef kompozit yapısı sayesinde tebeşirden 3.000 kat daha dayanıklıdır. Bu yapı incelendiğinde 8 mikron (1 mikron=10-6 metre) eninde ve 0,5 mikron kalınlığındaki mikroskobik plakaların tabakalar şeklinde dizildiği görülür. Bu plakalar kalsiyum karbonatın yoğun ve kristal gibi parlak bir şeklidir. Fakat bu plakaların birleştirilmesi ipek benzeri yapışkanlı bir protein sayesinde mümkün olmaktadır.

Bu kombinasyon iki yönlü bir sertlik sağlar. Öncelikle sedef üzerine ağır bir yük konulduğunda oluşan kırıklar, ince tabakalar boyunca ilerler fakat protein tabakalarını geçmeye çalışırken yön değiştirirler. Bu, uygulanan kuvveti dağıtır ve böylece kırılma durdurulmuş olur. İkinci bir güçlendirici faktör de, bir kırık oluşunca, protein tabakalarının kırıklar boyunca gerilmesidir. Bu gerilim sayesinde kırılmayı devam ettirecek olan enerji emilmiş olur.



Tuğlalardan örülmüş bir duvar görünümündeki sedefin iç yapısı, organik bir harçla sıkıştırılmış tabakalardan oluşur. Darbeyle oluşan çatlaklar, bu harcı geçmeye çalışırken yön değiştirirler, böylece hızları kesilerek bir süre sonra dururlar.

İşte sedefin hasarı azaltan bu özel yapısı, pek çok bilim adamı için de araştırma konusu olmuştur. Doğadaki malzemelerin böylesine akılcı yöntemlerle dayanıklılık kazanmış olması, kuşkusuz, üstün yaratılışı göstermektedir. Bu örnekten de anlaşılacağı gibi Allah bizlere apaçık varlığının ve yaratmasındaki üstün güç ve kudretinin delillerini sonsuz ilmi ve aklıyla göstermektedir. Bir ayette Allah şöyle buyurmaktadır:

Göklerde ve yerde her ne varsa O'nundur. Şüphesiz Allah, hiçbir şeye ihtiyacı olmayan (Gani)dır, övülmeye layık olandır. (Hac Suresi, 64)

Doğal kompozitlere başka bir örnek olarak kasları kemiklere bağlayan dokuları yani "tendon"ları verebiliriz. Tendonlar, kendilerini oluşturan kolajen bazlı lifler sayesinde son derece sert bir yapı kazanırlar. Bu liflerin bir başka özelliği ise birbirlerine örülme şekilleridir.



Asma köprülerdeki taşıyıcı halatlar, kaslarımızda olduğu gibi kablo demetlerinden oluşur.

ABD Rutgers Üniversitesi öğretim üyelerinden Janine M. Benyus, Biomimicry adlı kitabında, kaslarımızdaki tendonların çok özel bir yöntemle inşa edildiğini söyleyerek bu konudaki tespitlerini şöyle ifade etmiştir:

Dirsekle bileğiniz arasındaki tendon, asma bir köprüyü taşıyan halatlarda olduğu gibi, birbirine dolanmış kablo demetlerinden oluşur. Her bir kablo demeti ise, kendi içinde daha ince kabloların birbirine dolanmasından oluşmuştur. Bu daha ince kablolar da, birbirine dolanmış molekül demetlerinden meydana gelir. Hatta moleküllerdeki atomlar bile sarmal bir yapı halinde dururlar.(Janine M.Benyus, Biomimicry, Innovation Inspired By Nature, William Morrow and Company Inc. , New York, 1998, s.99-100)
Nitekim günümüz asma köprülerinde kullanılan çelik halat teknolojisi, insan vücudundaki tendonların yapısı örnek alınarak geliştirilmiştir. Tendonların bu benzersiz tasarımı, Allah'ın üstün sanatının ve sonsuz ilminin apaçık delillerinden sadece birisidir.
Çok Amaçlı Kullanılabilen Balina Yağı


Balina Yağı

Yunus ve balinaların vücutları yağ tabakası ile kaplıdır. Bu tabaka balinalara nefes almaları için yüzeye çıkabilmelerini sağlayan doğal bir şamandıra görevi görür. Aynı zamanda bu sıcakkanlı memeliyi okyanusun soğuk sularından korur. Balina yağının bir başka özelliği ise şeker ve proteine nazaran iki ile üç kat daha fazla enerji vermesidir. Balina, binlerce kilometre yol katettiği ve yeteri kadar beslenemediği uzun göçlerde ihtiyaç duyduğu enerjiyi vücudundaki bu yağdan temin eder.

Bunun yanı sıra balina yağı lastik gibi esnek bir malzemeden oluşur. Balina kuyruğunu suya her vurduğunda kuyruğu önce sıkışır, sonra genleşerek eski halini alır. İşte bu özellik balinaya hem ekstra bir hız kazandırır hem de uzun yolculuklarda %20 enerji tasarrufu sağlar. Balina yağı tüm bu özelliklerinden ötürü, bilinen en çok fonksiyona sahip malzeme olarak kabul edilmektedir.

Balina yağı balinalarda yüzyıllardır var olan bir maddedir. Ancak bu yağın bir ağ gibi birbirine geçen kolajen liflerden oluştuğu yakın bir zamanda keşfedilebilmiştir. Bilim adamları bu yağ-kompozit karışımının işlevlerini anlamak için halen çalışmalar yapmaktadırlar. Şu ana kadar edindikleri bilgiler bile, sentetik malzeme üretiminde son derece faydalı olmuştur.

Fiberglas tekniği, teknolojide 20. yüzyılda kullanılmaya başlanmıştır. Ancak bu malzeme canlılarda, var oldukları ilk günden beri mevcuttur. Örneğin timsahın derisi fiberglasla aynı yapıda bir malzemedir.
Bilim adamları okun, bıçağın ve hatta bazen kurşunların bile işlemediği timsah derisinin neden bu kadar sağlam olduğunu yakın bir zamana kadar bilmiyorlardı. Konuyla ilgili yapılan araştırmalar çok ilginç sonuçlar vermiştir: Timsahın sırt derisinde özel bir doku bulunmaktadır. Bu dokuya sağlamlığını veren malzeme, içinde kullanılan kolajen proteini lifleridir. Bu liflerin özelliği ise dokuların içerisine eklenerek dokunun yapısını güçlendirmeleridir. Kuşkusuz bu malzeme (kolajen) bunca ayrıntıya ve özelliğe evrimcilerin iddia ettikleri gibi uzun yıllar içerisinde birbirini takip eden tesadüfler sonucunda sahip olmamıştır. Bu madde, yeryüzünde daha ilk olarak ortaya çıktığında sahip olduğu mükemmel özelliklerle birlikte yaratılmıştır.
Comments: (0)
Birbirine karışmayan iki veya daha fazla katının bileşimiyle oluşan katı malzemelere "kompozit malzeme" denir. Doğadaki malzemelerin çoğu "kompozit" olarak adlandırılan bileşik yapılı maddelerden oluşur. Bu karışımın özelliği, kendini oluşturan maddelerin özelliklerinden çok daha üstündür.

Örneğin fiberglas yapay bir kompozittir ve gemi gövdesi, olta değneği, yay ve ok gibi birçok spor malzemesinin yapımında kullanılır. Fiberglas, "polimer" adı verilen jölemsi plastik bir maddenin içine karıştırılan cam liflerinden elde edilir. Polimerin sertleşmesi sonucunda oluşan kompozit malzeme hafif, sağlam ve aynı zamanda esnektir. Karışımda kullanılan liflerin ya da plastik maddenin nitelikleri değiştirilecek olursa, kompozit malzemenin özellikleri de değişir.

İnsanların ürettiği kompozitler, doğal kompozitlerden çok daha zayıf ve ilkel kalmaktadır. Grafit ve karbon liflerden oluşan kompozitler son 25 yılda insanoğlunun gerçekleştirdiği en iyi 10 mühendislik keşfi içinde yer almaktadır. Bununla beraber yeni uçaklar, uzay mekiği parçaları, spor malzemeleri, Formula-1 yarış arabaları ve yelkenliler için hafif yapıda kompozit malzemeler tasarlanmakta ve yeni buluşlar hızla ilerlemektedir.

Burada kısaca değindiğimiz kompozit malzemeler de doğadaki tüm olağanüstü yapı, malzeme ve sistemler gibi Allah'ın eşsiz yaratma sanatının birer örneğidir. Yaratılıştaki bu benzersizlik ve mükemmelliğe birçok Kuran ayetinde de dikkat çekilmiştir. Allah, benzersiz yaratmasının bir sonucu olarak, insanlara verdiği her türlü nimetin sayısının sayılamayacak kadar fazla olduğunu bir ayette şöyle bildirmiştir:

Eğer Allah'ın nimetini saymaya kalkışacak olursanız, onu bir genelleme yaparak bile sayamazsınız. Gerçekten Allah, bağışlayandır, esirgeyendir. (Nahl Suresi, 18)









Hafif yapılı kompozit malzemeler üstün nitelikleri nedeniyle uzay teknolojisinden, spor malzemelerine geniş bir alanda kullanılmaktadır.
Comments: (0)
Bugün doğadaki malzemelerin yapısını inceleyerek bunları çalışmalarında örnek olarak kullanan pek çok bilim adamı vardır. Çünkü doğadaki materyaller ihtiyaç duyulan sağlamlık, hafiflik, esneklik gibi özelliklere sahiptir. Örneğin "Abalone" adı verilen bir deniz canlısının iç kabuğu, yüksek teknolojiyle üretilen seramiklerden iki kat daha dayanıklıdır; örümceğin ipeği çelikten beş kat daha sağlamdır; midyedeki yapışkan ise suyun altında dahi etkisini koruyabilmektedir.

Bilim ve Teknik Dergisi araştırma ve yazı grubunun bir üyesi olan Gülgün Akbaba, doğadaki malzemelerin üstün özelliklerinden ve insanların bunlardan nasıl yararlanacağından şöyle bahseder:
Geleneksel seramik ve cam malzemeler, hemen her gün kendini yenileyen teknolojiye ayak uyduramaz hale geldi. Bilim adamları bu boşluğu doldurabilmek için çalışmalar yapıyorlar. Doğadaki yapıların mimari sırları yavaş yavaş çözülmeye başlandı… Tıpkı doğadaki bir midye kabuğunun kendi kendini yenilemesi ya da yara almış bir köpek balığının derisinde gerçekleşen onarım gibi, teknolojilerde kullanılan malzemeler de kendi kendini yenileyebilecek. Daha sert, sağlam, dayanıklı, üstün fiziksel, mekanik, kimyasal ve elektromanyetik özelliklere sahip olan bu malzemeler, örneğin uzay araştırmalarında roket, uzay mekiği, uydu taşıyıcıları gibi araçların atmosfer giriş ve çıkışlarında gereksinim duyulan yüksek sıcaklıklara dayanıklılık ve hafiflik özelliklerini taşıyor. Kıtalararası ulaşım için geliştirilmesi planlanan süpersonik dev yolcu uçakları çalışmalarında da ağırlıkça hafif ve yüksek sıcaklıklara dayanıklı malzemeler gerekiyor. Tıpta örneğin yapay kemik üretiminde gereksinim duyulansa, süngerimsi görünüşü, sert yapısıyla dokusu doğala olabildiğince yakın malzemeler.( "Malzeme Biliminin Önderlerinden İlhan Aksay", Bilim ve Teknik, Şubat 2002 s.92)



İlhan Aksay

Seramik, inşaattan elektrik malzemelerine kadar geniş kullanım alanı olan bir malzemedir. Ne var ki bu malzeme üretilirken çoğu zaman 1000-1500 oC'den daha fazla sıcaklıklara ulaşan bir ısının kullanılması gerekir.

Doğada birçok seramik malzeme vardır. Ancak bunların oluşumu sırasında hiçbir zaman böyle yüksek sıcaklıklar kullanılmaz. Örneğin midye kabuğu 4oC'de ve en mükemmel biçimde oluşmaktadır. Doğadaki bu üstün yaratılış örneği bir Türk bilim adamı olan İlhan Aksay'ın dikkatini çekmiş ve kendisi daha iyi, sağlıklı, kullanışlı, işlevsel seramiklerin nasıl üretileceği konusuna yönelmiştir. Bazı deniz hayvanlarının kabuklarının iç yapılarını inceleyen Aksay, Abalone adlı deniz canlısının kabuğundaki yapının olağanüstülüğünü hemen fark etmiştir. Aksay konuyla ilgili şunları söyler:

Midye kabuğu elektron mikroskobu altında 300.000 kez büyütüldüğünde, tuğladan bir duvar görünümü ortaya çıkar. Bu duvar, harç niteliğindeki bir proteinden ve kalsiyum karbonattan yapılmış tuğlalardan oluşur. Kalsiyum karbonat kırılgan bir niteliğe sahip olmasına karşın, kabuk katmanlı yapısından dolayı olağanüstü sağlam ve insan yapımı seramikten daha az kırılgandır. Bir halatın sadece bir ipi koptuğunda bütün halat kopmuş olmaz. İşte buna benzer şekilde midye kabuğunun bu katmanlı yapısı çatlakların yayılmasına engel olur.( www.princeton.edu/.../publicity/ PAW19980128/0128feat.htm)




Midye kabuğu mikroskobik boyuttaki tuğlalardan oluşur. Bu katmanlı yapı kabuktaki çatlakların yayılmasına engel olur.

Aksay, bu modellerden esinlenerek son derece sert ve dayanıklı alüminyum-bor karbür metal- seramik bir malzeme geliştirmiştir. Bu malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır.

Bugün bilim adamları biyomimetik malzemelerin üretilmesi için mikroskobik boyutlarda incelemeler yapmaktadır. Bu bilim adamlarından biri olan Prof. Aksay da, kemik ve diş türü biyoseramiklerin, vücut sıcaklığında, protein gibi organik maddelerin birleştirilmesiyle oluştuğunu ve bunların insan üretimi seramiklerden çok daha üstün nitelikler gösterdiğini açıklamıştır. Aksay'ın çalışmaları, yani doğadaki üstün niteliklerin nanometre (milimetrenin milyonda biri) boyutlarındaki birleştirmeden kaynaklanmış olduğu tezi, bu boyutlarda araç üretmeyi amaçlayan birçok elektronik şirketini biyoesinli malzeme (biyolojik malzemelerden esinlenilerek hazırlanan insan yapısı malzemeler) araştırmalarına yöneltmiştir.

Endüstride kullanılan pek çok madde zararlı kimyasalların bulunduğu, yüksek ısı ve basınç gerektiren ortamlarda üretilirler. Halbuki doğadaki materyaller "yaşam dostu" olarak ifade edebileceğimiz zararsız koşullarda -örneğin su bazlı solüsyonlarda, oda sıcaklığında- üretilirler. Bu da kuşkusuz, bilim adamları için son derece önemli bir avantaj sağlar.


Abolone adlı deniz canlısından esinlenilerek elde edilen malzeme, ABD'de ordunun çeşitli laboratuvarlarında denendikten sonra tanklarda zırh olarak kullanılmıştır.

Sentetik elmas üreticileri, metal alaşım tasarımcıları, polimer bilimcileri, fiber optik uzmanları, ince seramik üreticileri ve yarı-iletken malzeme geliştirenler en pratik yol olarak biyomimetik yöntemlerine başvurmaktadırlar. Çünkü her yönden ihtiyaçlarına cevap veren doğadaki malzemeler, aynı zamanda çok geniş bir çeşitliliğe de sahiptir. Dolayısıyla çeşitli dallarda araştırma yapan uzmanlar, kurşun geçirmez yeleklerden jet motorlarına kadar pek çok konuda, doğada bulunan üstün özelliklerdeki malzemeleri suni yollardan elde edebilmek için orijinallerini taklit etmeye başlamışlardır.

İnsanların yaptığı malzemeler bir süre sonra çatlar, kırılır. Bu durumda dışarıdan bir müdahaleyle, örneğin yapıştırmayla malzeme onarılır. Oysa doğadaki durum farklıdır. Midye kabuğu gibi doğadaki bazı malzemeler kendi kendilerini yenileyebilirler. Bilim adamları da son dönemde kendini yenileyebilen polimerler, polisiklatlar vb. malzemeler üzerinde çalışmalara yönelmişlerdir.



Mercanlar sağlamlık açısından midye kabuklarındaki sedef ile yarışabilir. Mercanlar, denizdeki kalsiyum tuzlarını kullanarak gemilerin çelik gövdelerini yaracak kadar sert bir yapı oluştururlar.


Doğadaki pek çok malzeme insanlara örnek olabilecek üstün özelliklere sahiptir. Mesela kemiğin bir gramı demirin bir gramına oranla çok daha sağlamdır.

Sağlam ve kendi kendini onarabilen biyoesinli malzeme geliştirmek için örnek alınan doğal malzemelerden birisi de gergedan boynuzudur. Bu araştırmalar, 21. yüzyılın malzeme biliminde üzerinde çalışılacak konulara temel olacaktır.